Alifta Ainurrochmah
Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Flexibility of Nonparametric Regression Spline Truncated on Data without a Specific Pattern Andrea Tri Rian Dani; Narita Yuri Adrianingsih; Alifta Ainurrochmah; Riry Sriningsih
Jurnal Litbang Edusaintech Vol. 2 No. 1 (2021): Volume 2 No 1 2021
Publisher : Litbang PWM Jawa Tengah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51402/jle.v2i1.30

Abstract

Bentuk pola hubungan antara variabel prediktor dan variabel respon ada yang diketahui, namun pada nyatanya ada pula yang tidak diketahui. Apabila bentuk pola hubungan antara variabel respon dan variabel prediktor tidak diketahui, pendekatan regresi nonparametrik merupakan pendekatan yang paling sesuai. Pendekatan regresi nonparametrik tidak tergantung pada asumsi bentuk kurva regresi tertentu, sehingga akan memberikan fleksibilitas yang tinggi. Salah satu estimator regresi nonparametrik yang terkenal adalah spline truncated. Spline truncated merupakan potongan-potongan polinomial yang memiliki sifat tersegmen dan kontinu. Pada penelitian ini, akan disimulasikan pola hubungan antara kedua variabel yaitu respon dan prediktor yang tidak memiliki pola tertentu, yang kemudian didekati dengan dua pendekatan regresi, yaitu parametrik dan nonparametrik. Berdasarkan ukuran kebaikan estimasi kurva regresi menggunakan koefisien determinasi diperoleh hasil bahwa pendekatan regresi nonparametrik lebih baik daripada pendekatan regresi parametrik. Hal ini dikarenakan pendekatan regresi nonparametric memiliki fleksibilitas yang tinggi sehingga mampu menyesuaikan sendiri bentuk estimasi kurva regresi.