Kania Evita Dewi
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

PERBANDINGAN METODE NEWTON-RAPHSON DAN ALGORITMA GENETIK PADA PENENTUAN IMPLIED VOLATILITY SAHAM Kania Evita Dewi
Komputa : Jurnal Ilmiah Komputer dan Informatika Vol 1 No 2 (2012): Komputa : Jurnal Ilmiah Komputer dan Informatika
Publisher : Program Studi Teknik Informatika - Universitas Komputer Indonesia (UNIKOM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (743.302 KB) | DOI: 10.34010/komputa.v1i2.56

Abstract

Penelitian ini bertujuan untuk menentukan implied volatility dari suatu saham dengan menggunakan algoritma genetika dan metode Newton-Raphson. Algoritma genetika yang merupakan suatu cara untuk mencari solusi masalah optimasi, tidak memerlukan sifat dari fungsi yang akan dicari solusinya, dapat menyelesaikan semua fungsi dengan syarat fungsi tersebut dapat diubah kedalam masalah optimasi. Dalam penelitian ini hasil perhitungan yang menggunakan algoritma genetika dibandingkan dengan hasil perhitungan dengan metode Newton-Raphson yang sudah biasa digunakan. Hasil penelitian menunjukan implied volatility yang dihasilkan metode Newton-Raphson lebih mendekati volatilitas bursa dibanding yang dihasilkan algoritma genetika. Ini dapat dilihat dari selisih antara harga opsi teoritis dengan harga opsi dibursa yang dihasilkan metode Newton-Raphson lebih kecil dibanding yang dihasilkan algoritma genetika. Penelitian ini juga memperlihatkan bahwa volatilitas opsi put terhadap strike price berbentuk volatility smile dan untuk volatilitas opsi call terhadap strike price berbentuk volatility skew untuk opsi yang memiliki maturity time 1 bulan dan 2 bulan dan untuk maturity time yang lain volatilitasnya berbentuk volatility smile.
PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DAN FITUR EKSTRAKSI N-GRAM DALAM ANALISIS SENTIMEN BERBASIS ASPEK Robi Nurhidayat; Kania Evita Dewi
Komputa : Jurnal Ilmiah Komputer dan Informatika Vol 12 No 1 (2023): Komputa : Jurnal Ilmiah Komputer dan Informatika
Publisher : Program Studi Teknik Informatika - Universitas Komputer Indonesia (UNIKOM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/komputa.v12i1.9458

Abstract

Pertumbuhan dan perkembangan teknologi yang begitu cepat dan pesat menjadikan membeli produk secara online semakin meningkat dan disukai yaitu membeli produk kecantikan. Banyak pertimbangan untuk mengetahui kualitas dari produk, salah satu caranya yaitu melihat ulasan produk kecantikan. Tujuan dari penelitian untuk mengevaluasi performansi dari metode K-Nearest Neighbor dan fitur ekstraksi N-Gram dalam melakukan analisis sentimen berbasis aspek pada produk kecantikan. Metodologi yang digunakan adalah pengumpulan data, preprocessing, ekstraksi fitur N-Gram, pembobotan kata dengan TF-IDF, klasifikasi dengan K-Nearest Neighbor ,Multi Label dengan binari ova, dan terakhir evaluasi performansi. Pembagian data dibagi menjadi tiga skenario yaitu 80:20, 70:30:, dan 60:40. Pengujian dilakukan dengan dataset original dan data yang diseimbangkan menggunakan metode Random Over Sampling. Hasil pengujian menunjukkan bahwa data yang seimbang menghasilkan nilai akurasi yang lebih baik daripada data yang tidak seimbang. Pada KNN dengan nilai k = 1 pada dataset seimbang, menghasilkan akurasi tertinggi. Akurasi pada aspek aroma, harga, kemasan dan efektivitas secara berturut-turut adalah 91,9%; 95,4%; 98,6%; 88,8%. Berdasarkan hasil pengujian yang telah dilakukan pada setiap aspek, didapatkan akurasi tertinggi dengan nilai akurasi 98,6% dari aspek kemasan pada skenario data 80:20.
Peringkasan dan Support Vector Machine pada Klasifikasi Dokumen Nelly Indriani Widiastuti; Ednawati Rainarli; Kania Evita Dewi
JURNAL INFOTEL Vol 9 No 4 (2017): November 2017
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v9i4.312

Abstract

Klasifikasi adalah proses pengelompokkan objek yang memiliki karakteristik atau ciri yang sama ke dalam beberapa kelas. Klasifikasi dokumen secara otomatis dapat dilakukan dengan menggunakan ciri atau fitur kata yang muncul pada dokumen latih. Jumlah dokumen yang besar dan banyak mengakibatkan jumlah kata yang muncul sebagai fitur akan bertambah. Oleh karena itu, peringkasan dipilih untuk mereduksi jumlah kata yang digunakan dalam proses klasifikasi. Untuk proses klasifikasi digunakan metode Support Vector Machine (SVM) untuk multikelas. SVM dipilih karena dianggap memiliki reputasi yang baik dalam klasifikasi. Penelitian ini menguji penggunaan ringkasan sebagai seleksi fitur dalam klasifikasi dokumen. Peringkasan menggunakan kompresi 50%. Hasil yang diperoleh menunjukkan bahwa proses peringkasan tidak mempengaruhi nilai akurasi dari klasifikasi dokumen yang menggunakan SVM. Akan tetapi, penggunaan peringkasan berpengaruh pada peningkatan hasil akurasi dari metode klasifikasi Simple Logistic Classifier (SLC). Hasil pengujian metode klasifikasi menunjukkan bahwa penggunaan metode Naïve Bayes Multinomial (NBM) menghasilkan akurasi yang lebih baik dari pada metode SVM.