Agustin Faradila
Badan Pusat Statistik RI, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENGGEROMBOLAN SUBSEKTOR INDUSTRI BERDASARKAN PERKEMBANGAN INDEKS PRODUKSI MENGGUNAKAN PREDICTION-BASED CLUSTERING Agustin Faradila; Utami Dyah Syafitri; I Made Sumertajaya
Indonesian Journal of Statistics and Applications Vol 4 No 3 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i3.585

Abstract

Statistics Indonesia (BPS) noted that there has been a decrease in the contribution of the industrial sector to the national GDP even though it had provided a significant multiplier effect on national economic growth. Therefore, it is necessary to cluster the industrial subsector based on its growth patterns so that the optimization of development results can be achieved. Prediction-based clustering is part of time series clustering (TSclust) which aims to form clusters based on prediction characteristics so that it can be used to choose a cluster that will become a mainstay industry in the future. This study focused on applying prediction-based clustering in the large and medium industrial sub-sector for a prediction period of 1 month, 1 quarter, and 1 semester. The data used in this study was the production index data from January 2010 to December 2018. The results showed that the best cluster for 1 month consisted of 5 groups, for 1 quarter consisted of 4 groups and for 1 semester consisted of 2 groups. Thus, it was concluded that the food industry; leather industry, leather goods, and footwear; and the pharmaceutical industry, chemical drug products, and traditional medicine could be chosen to be the mainstay industry in the future.