Martins Afam Nwaokolo
Department of Mathematics and Statistics, Federal University Wukari, Nigeria

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Mathematical Modelling and Control of COVID-19 Transmission in the Presence of Exposed Immigrants Reuben Iortyer Gweryina; Chinwendu Emilian Madubueze; Martins Afam Nwaokolo
Communication in Biomathematical Sciences Vol. 4 No. 2 (2021)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2021.4.2.2

Abstract

In this paper, a mathematical model for COVID-19 pandemic that spreads through horizontal transmission in the presence of exposed immigrants is studied. The model has equilibrium points, notably, COVID-19-free equilibrium and COVID-19-endemic equilibrium points. The model exhibits a basic reproduction number, R0 which determines the elimination and persistence of the disease. It was found that when R0 < 1, then the equilibrium becomes locally asymptotically stable and endemic equilibrium does not exists. However, when R0 > 1, the equilibrium is found to be stable globally. This implies that continuous mixing of exposed immigrants with the susceptible population will make the eradication of COVID-19 difficult and endemic in the community. The system is also proved qualitatively to experience transcritical bifurcation close to the COVID-19-free equilibrium at the point R0 = 1. Numerically, the model is used to investigate the impact of certain other relevant parameters on the spread of COVID-19 and how to curtail their effect.