Lei Peng
Hubei University of Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A relational background knowledge boosting based topic model for Chinese poems Peng, Lei; Porntrakoon, Paitoon
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 2: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i2.pp1227-1243

Abstract

Classical Chinese poetry has been increasingly popular in recent years, and modeling its topic is quite a promising area of research. Chinese poems have the characteristic of short in length, but traditional topic models perform poorly when faced with short texts due to the text sparsity. Therefore, topic model should be improved to satisfy the scenario of classical Chinese poems. In this paper, a relational background knowledge boosting based topic model (RBKBTM) was proposed to overcome the text sparsity of Chinese poems. We incorporated background information into the model, which expanded the text content from the semantic perspective. The background knowledge was combined using word embedding and TextRank and was then fed into the core computing process. Subsequently, a new sampling formula was derived. Our proposed model was tested on three different tasks using three different datasets. The results demonstrate that the incorporated background knowledge can effectively overcomes text sparsity, improving the performance and effectiveness of the topic model.