Jorge S Valenzona
Visayas State University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

On Triangular Secure Domination Number Emily L Casinillo; Leomarich F Casinillo; Jorge S Valenzona; Divina L Valenzona
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 2, No 2 (2020)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v2i2.15996

Abstract

Let T_m=(V(T_m), E(T_m)) be a triangular grid graph of m ϵ N level. The order of graph T_m is called a triangular number. A subset T of V(T_m) is a dominating set of T_m  if for all u_V(T_m)\T, there exists vϵT such that uv ϵ E(T_m), that is, N[T]=V(T_m).  A dominating set T of V(T_m) is a secure dominating set of T_m if for each u ϵ V(T_m)\T, there exists v ϵ T such that uv ϵ E(T_m) and the set (T\{u})ꓴ{v} is a dominating set of T_m. The minimum cardinality of a secure dominating set of T_m, denoted by γ_s(T_m)  is called a secure domination number of graph T_m. A secure dominating number  γ_s(T_m) of graph T_m is a triangular secure domination number if γ_s(T_m) is a triangular number. In this paper, a combinatorial formula for triangular secure domination number of graph T_m was constructed. Furthermore, the said number was evaluated in relation to perfect numbers.