Chiara Janetra Cakravania
Telkom University's Student

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Snakebite Classification Using Active Contour Model and K Nearest Neighbor Chiara Janetra Cakravania; Dody Qori Utama
Journal of Data Science and Its Applications Vol 3 No 1 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.38

Abstract

Indonesia is categorized as one of tropical countries that have a high risk of snakebites. This surely may endanger rural citizens’ lives for there are still many snakes found in rural areas. The main cause of death from snakebite cases is by reason of the venom squirted from snake’s canine teeth. Others causes are errors in identifying the bite marks visually. There are anatomical differences between puncture wounds from venomous and non-venomous snakes. This study established a snakebite identification system using Active Contour Model and K Nearest Neighbor (KNN) methods. By performing some tests related to the parameters used in the method, the highest accuracy value on K Nearest Neighbor method was obtained by using the correlation distance rule, the K value = 3, without using distance weight in the classification system.