Claim Missing Document
Check
Articles

Found 3 Documents
Search

PELATIHAN MEDIA E-LEARNING BERBASIS WEB PADA GURU SDN JATIMEKAR I BEKASI Nunu Kustian; Siti Julaeha; Dudi Parulian
Aptekmas Jurnal Pengabdian pada Masyarakat Vol 4 No 1 (2021): APTEKMAS Volume 4 Nomor 1 2021
Publisher : Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (259.555 KB) | DOI: 10.36257/apts.v4i1.3175

Abstract

The role of the teacher is very important in the success of students and the quality of education in schools, but many teachers only rely on one application so that teaching and learning activities are boring for students such as the use of smartphones that are not optimal by teachers and students and lack of knowledge of web based E-Learning media to support activities online student learning and evaluation. Quizizz is a web based E-Learning media that can be used by teachers in distance learning whose use is to create online exercises for students, providing maximum potential in technological literacy which is very useful in the current Covid 19 pandemic situation. The method used in training and mentoring teachers at SDN Jatimekar I Bekasi as an alternative application in carrying out daily asssessments and is easy to operate by the teacher, where the teacher can act as admin, examiner, or who makes questions independently. Quizizz has the potential for innovation in distance learning between teachers and students with mobile friendly features, which can be downloaded on the play store or google play which is already available on smartphones.
Pelatihan Peningkatan Kreativitas Dalam Pembuatan Media Pembelajaran Dengan Menggunakan Canva Pada SMPN 102 Jakarta Bahtera Alam Wijaksono; Dudi Parulian; Mohammad Fazrie
Kapas: Kumpulan Artikel Pengabdian Masyarakat Vol 1, No 3 (2023)
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (631.051 KB) | DOI: 10.30998/ks.v1i3.1529

Abstract

Pada saat ini pandemic belum dapat dikatakan telah usai beberapa siswa yang terpapar dengan covid tidak dapat melakukan pertemuan tatap muka dengan guru dan teman siswa yang berada disekolah. Membuat para guru harus membuat pembelajaran yang interaktif dan menarik agar siswa yang saat ini tidak dapat bersekolah agar tetap mendapatkan pembelajaran yang sama yang diberikan oleh guru disekolah. Sebelum mengenalkan media pada pembelajaran metode pembelajaran yang digunakan pada kegiatan yaitu observasi,  wawancara, dan demonstrasi pada saat pendampingan berlangsung. tim mengenalkan media pembelajaran via daring yang bisa diberikan oleh guru dengan menggunakan aplikasi canva, dengan aplikasi tersebut memudahkan guru dalam membuat media pembelajaran interaktif, dengan menggunakan media aplikasi canva lebih dapat memudahkan guru dalam membuat materi pembelajaran interaktif yang akan diberikan ke siswa. Oleh karena itulah tim dari Unindra akan melaksanakan pengabdian kepada masyarakat untuk membantu guru dalam  memberikan pemanfaatan canva dalam pembuatan bahan ajar intraktif pada SMP Negeri 102 Jakarta.
Implementasi Klasifikasi Datamining dengan Algoritma C4.5 untuk Rekomendasi Pemilihan Fakultas Perguruan Tinggi Berdasarkan Minat dan Bakat Siswa SMK Senna Hendrian; V.H Valentino; Wisdariah, Wisdariah; Riezca Talita Trista; Dudi Parulian
Neptunus: Jurnal Ilmu Komputer Dan Teknologi Informasi Vol. 3 No. 4 (2025): November : Neptunus : Jurnal Ilmu Komputer Dan Teknologi Informasi
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/neptunus.v3i4.1159

Abstract

Selecting a faculty that aligns with students’ interests and talents is a strategic step in determining the success of higher education and future career paths. However, most vocational high school (SMK) students still face difficulties in identifying the most suitable faculty due to the lack of data-driven analysis. This study implements the C4.5 classification algorithm within data mining techniques to build an automatic and measurable faculty recommendation system. The dataset consists of attributes such as SMK major, interest level, aptitude test results, academic grade average, and gender, with the output being the recommended faculty. The C4.5 algorithm was chosen for its ability to generate a transparent and interpretable decision tree, which helps both guidance counselors and students understand the rationale behind the recommendations. The experimental results show that the constructed classification model achieved an accuracy rate of 88%, based on cross-validation testing using data from 12th-grade students. The implementation of this system is expected to serve as an objective tool in the faculty selection process and to promote a data-driven decision-making approach in secondary education environments.