Mr Prihartanto
Badan Pengkajian dan Penerapan Teknologi

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Pembangunan Sistem Peringatan Dini Bencana Longsor di Kampung Jatiradio, Desa Cililin, Kabupaten Bandung Barat, Provinsi Jawa Barat Mr Prihartanto
Jurnal ALAMI : Jurnal Teknologi Reduksi Risiko Bencana Vol. 3 No. 2 (2019): Jurnal Alami
Publisher : Agency for the Assessment and Application of Technology / Badan Pengkajian dan Penerapan Teknologi (BPPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/alami.v3i2.3729

Abstract

Landslide is a serious disaster that frequently occurs in several places in Indonesia. One effort to reduce victims and economic loss is to increase community preparedness. In 2018 Centre for Disaster Risk Reduction Technology – Agency for The Assessment and Application of Technology (PTRRB – BPPT) has developed a Landslide Early Warning System (LEWS) that was installed at Jatiradio Kampong of Cililin Village, Cililin District, West Bandung Regency, West Java Province. The System was consisted of a master module (coordinator), a slave module (node) and a data centre. The data centre acts as a control system and data and information monitoring centre through SMS gateway application and a website application namely Si Benar. This developed LEWS had capabilities to detect rainfalls, soil moistures, land slope changes, to measure the acceleration of ground movement and to provide an early warning. The data from the node has been collected by the master module and than sent to the data centre.  Based on rainfall and piezometric ground water level data from 25 to 28 February 2019, the two parameters were analyzed to determine the performance of the LEWS equipment. The result showed there was a positive / proportional correlation between rainfalls and the Ground Water Levels. Keywords: Landslide, Disaster, Early Warning System, Preparedness, SMS Gateways ABSTRAKBencana longsor merupakan bencana penting yang seringkali terjadi di beberapa kota di Indonesia. Salah satu upaya untuk mengurangi korban dan kerugian ekonomi adalag dengan meningkatkan kesiapsiagaan masyarakat. Pada tahun 2018 Pusat Teknologi Reduksi Risiko Bencana – Badan Pengkajian dan Penerapan Teknologi (PTRRB – BPPT) telah mengembangkan sistem peringatan dini longsor (LEWS) yang telah terpasang di Kampung Jatiradio, Desa Cililin, Kecamatan Cililin, Kabupaten Bandung Barat. Sistem ini terdiri dari modul induk (coordinator), modul anak (node) dan pusat data. Data center berfungsi sebagai sistem pengendalian dan monitoring data dan informasi menggunakan aplikasi SMS gateway dan aplikasi website Si-Benar. LEWS  yang dikembangkan ini mampu mendeteksi curah hujan, kelembaban tanah, perubahan kemiringan tanah, mengukur percepatan pergerakan tanah dan memberikan peringatan siaga dini. Data-data tersebut dikirimkan ke data center untuk kemudian dikirimkan ke pusat data. Berdasarkan data curah hujan dan tinggi muka air (TMA) piezometrik pada tanggal 25 sampai dengan 28 Februari 2019, maka dilakukan analisis pada kedua parameter tersebut untuk menjelaskan tentang kinerja peralatan LEWS. Hasil dari analisa tersebut menunjukan bahwa adanya korelasi positif/sebanding antara curah hujan dan TMA piezometrik.Kata kunci: Longsor, Bencana, Sistem Peringatan Dini Longsor, Kesiapsiagaan, SMS Gateways
Model Penurunan Tinggi Muka Air Tanah Setelah Kejadian Hujan di Lokasi Sistem Peringatan Dini Longsor di Kampung Jatiradio, Desa Cililin, Kecamatan Cililin, Kabupaten Bandung Barat Mr Prihartanto
Jurnal ALAMI : Jurnal Teknologi Reduksi Risiko Bencana Vol. 4 No. 1 (2020): Jurnal Alami
Publisher : Agency for the Assessment and Application of Technology / Badan Pengkajian dan Penerapan Teknologi (BPPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/alami.v4i1.3986

Abstract

AbstractLandslide events that have occurred  in Jatiradio, Cililin Village, Cililin District, West Bandung Regency triggered the installation of a Landslide Early Warning System (LEWS). The equipmentl transmits data such as rainfall and ground water level for every hour which is detected from rain gauge sensors and pressure transducers. The relationship between rainfall and ground water level is important to understand in order to know the fluctuttion patterns that trigger landslides. Therefore, mathematical model of the decline in groundwater level every time after the rainfall in Jatiradio, Cililin Village, Cililin District, West Bandung Regency during the 2019 rainy season was made. Thus, it can be seen the relationship between rainfall patterns and water level fluctuations in certain rainfall periods.The method used in producing the model is a regression model using spreedsheet software. Regression equations and coefficients of determination were obtained to analyze the relationship of ground water level to rainfall. The results of mathematical modeling between ground level I (23-24 February 2019) and II (24-25 February 2019) are linear to rainfall, except for the decline in groundwater level III which occurred on February 25-28, 2019 which shows exponential relationship, meaning that a rapid decline in groundwater level. The regression model equation obtained for each groundwater level decrease is  with R² = 0.9631;  with R² = 0.9988;  with R2 = 0.9903. Keywords: Model, Landslide, Landslide Early Warning System, PreparednessAbstrakKejadian bencana longsor yang pernah terjadi di Kampung Jatiradio, Desa Cililin, Kecamatan Cililin, Kabupaten Bandung Barat mendorong dipasangnya alat Landslide Early Warning System (LEWS). Alat tersebut mengirimkan data seperti curah hujan dan tinggi muka air tanah setiap satu jam yang dideteksi dari sensor penakar hujan dan pressure transducer. Hubungan antara curah hujan dan tinggi muka air tanah penting untuk diketahui agar dapat diketahui pola fluktuasi yang memicu longsor. Maka dari itu membuat model matematik penurunan tinggi muka air tanah setiap kali setelah kejadian hujan di Kampung Jatiradio, Desa Cililin, Kecamatan Cililin, Kabupaten Bandung Barat pada saat musim hujan 2019. Model penurunan tinggi muka air tersebut dapat dihubungkan dengan pola fluktuasi curah hujan yang terjadi dengan demikian dapat diketahui hubungan antara pola curah hujan dan pola fluktuasi tinggi muka air pada periode hujan tertentu.Metode yang digunakan dalam menghasilkan model tersebut yaitu model regresi dengan menggunakan perangkat lunak spreedsheet. Persamaan regresi dan koefisien determinasi didapatkan untuk menganalisis hubungan tinggi muka air tanah terhadap curah hujan. Hasil pemodelan matematika menghasilkan hubungan penurunan tinggi muka air tanah I (23 – 24 Februari 2019) dan II (24-25 Februari 2019) linier terhadap curah hujan, kecuali penurunan tinggi muka air tanah III yang terjadi pada tanggal 25-28 Februari 2019 yang menunjukkan hubungan eksponensial, artinya terjadi penurunan tinggi muka air tanah yang cepat. Persamaan model regresi yang didapatkan untuk masing-masing penurunan yaitu  dengan R² = 0,9631 ; dengan R² = 0,9988;  dengan R² = 0,9903. Kata kunci: Model, Longsor, Sistem Peringatan Dini Longsor, Kesiapsiagaan
PERKIRAAN WAKTU KEDATANGAN BANJIR BERDASARKAN ANALISIS EMPIRIK REKAMAN DATA SISTEM PERINGATAN DINI BANJIR KOTA BEKASI Mr Prihartanto
Jurnal Sains dan Teknologi Mitigasi Bencana Vol. 14 No. 1 (2019): Jurnal Sains dan Teknologi Mitigasi Bencana
Publisher : Badan Pengkajian dan Penerapan Teknologi (BPPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmb.v14i1.3558

Abstract

Flood disaster that occur in the Kali Bekasi watershed often cause damage of property and casualties. The watershed is divided into two main parts namely upstream and downstream watersheds which are limited by Bekasi Dam. High rainfall in the upstream often causes flooding in Pondok Gede Permai Estate, Bekasi City. To improve community preparedness, a flood early warning system (FEWS) has been installed which consists of 5 monitoring stations along the Cileungsi and Cikeas Rivers in 2017. The main question that needs to be answered in this paper is how long the upstream flood peak will reach community settlements ? Based on the recorded data on the LEWS instrument, the flood peak travel time from the upstream station to the affected area can be calculated empirically. The results ofthe time calculation can be used by stakeholders to carry out evacuation after an early warning is given. The parameter used in this analysis are the river water level at several monitoring stations on the Cileungsi River, namely: Cibongas Irrigation Dam,WIKA Bridge and Pondok Gede Permai.Bencana banjir yang terjadi di DAS Bekasi sering menimbulkan kerugian harta benda maupun korban jiwa. DAS ini terbagi atas dua bagian utama yaitu DASbagian hulu dan bagian hilir yang dibatasi oleh Bendung Bekasi. Curah hujan yang tinggi di DAS bagian hulu sering menimbulkan banjir di Perumahan Pondok Gede Permai, Kota Bekasi. Untuk meningkatkan kesiapsiagaan masyarakat di perumahan tersebut, maka telah dipasang sistem peringatan dini banjir (Flood Early Warning System/LEWS) yang terdiri dari 5 stasiun pemantauan di sepanjang Sungai Cileungsi dan Cikeas pada tahun 2017. Pertanyaan utama yang perlu dijawab dalam makalah ini adalah berapa lama puncak banjir di bagianhulu akan mencapai permukiman masyarakat ? Berdasarkan basis data yang telah terekam pada instrument LEWS tersebut, waktu perjalanan puncak banjir dari stasiun hulu menunju area terdampak dapat dihitung secara empirik. Hasil perhitungan waktu tersebut dapat dimanfaatkan oleh para pemangku kepentingan untuk melakukan evakuasi setelah peringatan dini diberikan. Parameter yang digunakan dalam analisis ini adalah tinggi muka air yang di beberapa stasiun pemantauan di Sungai Cileungsi yaitu : Dam Irigasi Cibongas, Jembatan WIKA dan Pondok Gede Permai.
PREDICTION OF MEDICAL HAZARDOUS WASTE GENERATION FROM COVID-19 PATIENT HANDLING HOSPITALS Mr Prihartanto
Jurnal Sains dan Teknologi Mitigasi Bencana Vol. 15 No. 1 (2020): Jurnal Sains dan Teknologi Mitigasi Bencana
Publisher : Badan Pengkajian dan Penerapan Teknologi (BPPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmb.v15i1.4118

Abstract

The Covid-19 pandemic disaster has resulted in thousands peoples died and hospitalized. Handling of Covid-19 patients requires more medical equipment than normal condition, such as masks, goggles, protective clothing and so on which will increase the rate of generation of medical waste. Prediction of the total medical hazardous waste generation in Indonesia can be calculated using the prediction model of the total number of Covid-19 cases and the average generation of medical waste for each one patient. In this study, the capacity of a hazardous waste incinerator in Indonesia is also calculated to determine the time needed for waste processing. Besides, standar procedures for handling medical  hazardous waste from source to final disposal site are also needed.
REGRESION MODEL OF COVID-19 MEDICAL HARZARDOUS WASTE GENERATION BASED ON MAXIMUM BEDS CAPACITY OF REGIONAL HOSPITALS IN DKI JAKARTA Mr Prihartanto
Jurnal Sains dan Teknologi Mitigasi Bencana Vol. 15 No. 2 (2020): Jurnal Sains dan Teknologi Mitigasi Bencana
Publisher : Badan Pengkajian dan Penerapan Teknologi (BPPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmb.v15i2.4406

Abstract

The Covid-19 pandemic disaster in DKI Jakarta has shown a significant increasing in confirmed positive cases starting in September 2020, resulting in the re-implementing of Large-Scale Social Distancing (PSBB). The main factor that led to the re-implementing of the PSBB in DKI Jakarta is the limited bed capacity in the 67 Covid-19 referal Local General Hospitals (RSUD). Handling Covid-19 patients requires more medical equipment such as masks, glasses, protective clothing and so on, which will increase the rate of medical waste generation. This study will discuss the prediction of minimum and maximum generation of Covid-19 medical hazardous waste (B3) in 67 Covid-19 referal RSUD in DKI Jakarta which can be calculated based on the maximum capacity of available isolation and ICU beds during the period 23 August - 4 October 2020 and the average of medical waste generation per patient treated. From the prediction, a regression model of increasing number of minimum and maximum medical hazardous waste produced in several Covid-19 referal RSUD in DKI Jakarta can be made. Keywords: covid-19, hazardous waste, hospital, maximum capacity, regression model.