Basuki Agung Pudjanto
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PELAPISAN BAJA TIPE ST-37 DENGAN NANO POWDER PACK BORON KARBIDA Sugondo .; Ratih Langenati; Widjaksana .; Basuki Agung Pudjanto
Jurnal Teknologi Bahan Nuklir Vol 2, No 2 (2006): Juni 2006
Publisher : PTBN - BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (336.52 KB)

Abstract

ABSTRAK PELAPISAN BAJA TIPE ST-37 DENGAN NANO POWDER PACK BORON KARBIDA. Baja ST-37 banyak digunakan dalam industri. Kualitas baja ST-37 dapat ditingkatkan melalui pelapisan permukaan. Perkembangan teknologi dewasa ini menunjukkan kecenderungan yang mengarah pada sains nano dan teknologi nano yang dapat diaplikasikan dalam berbagai bidang antara lain energi, industri, kesehatan, informatika dan komunikasi maupun pangan yang dibutuhkan masyarakat luas dengan nilai jual yang kompetitif. Langkah-langkah boronisasi powder pack meliputi: perlakuan awal, persiapan serbuk, persiapan boronizing agent, persiapan kontainer, proses boronisasi, metalografi, uji kekerasan, dan uji korosi. Dari percobaan diperoleh hasil sebagai berikut. Mekanisme proses boronisasi ada tiga tahap, yaitu tahap pembentukan senyawa borida, tahap difusi, dan tahap pertumbuhan serta orientasi butir. Karbon pada B4C pada proses boronisasi tidak berdifusi masuk ke dalam substrat. Pembentukan senyawa borida mulai terjadi pada temperatur 600 °C, proses difusi mulai terjadi pada temperatur 700 °C, dan proses pertumbuhan serta orientasi kristal mulai terjadi pada temperatur 800 °C. Kekerasan lapisan boron yang diperoleh mencapai 1115 VHN. Lapisan hasil proses boronisasi tahan terhadap korosi HCl 10%. KATA KUNCI: Baja tipe ST-37, Nano powder pack, Boron karbida ABSTRACT COATING ON STEEL ST-37 TYPE WITH NANO POWDER PACK OF BORON CARBIDE. Steel ST-37 is a material widely used in industry. The quality of steel ST-37 can be improved by means of surface coating. At present the development of the technology shows the tendency toward nanoscience and nanotechnology that can be applied to various fields, among others energy, industry, medicine, information technology and communication as well as food necessitated by people at competitive selling prices. The steps in powder pack boronizing include: Pre-treatment, powder preparation, boronizing agent preparation, container preparation, boronizing process, metallography, hardness testing and corrosion testing. From the study, it is concluded as follows. The mechanism of boronizing process is divided into three stages, which are the boride compound formation stage, the diffusion stage, and the grain growth and orientation stage. Carbon in B4C on boronizing process does not diffuse into the substrate. The formation of boride compound begins to occur at a temperatur of 600 °C, the diffusion process at 700 °C, and the grain growth and orientation at 800 °C. The hardness of boron coating reaches a value of 1115 VHN. Coating by boronizing process shows corrosion resistance in 10% HCl. FREE TERMS: ST-37 type steel, Nano powder pack, Boron carbide
THE THERMODYNAMIC MODELING OF THE URANIUM-OXYGEN SYSTEM Basuki Agung Pudjanto
Jurnal Teknologi Bahan Nuklir Vol 1, No 1 (2005): Januari, 2005
Publisher : PTBN - BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (240.785 KB)

Abstract

ABSTRACT THE THERMODYNAMIC MODELING OF THE URANIUM-OXYGEN. The thermodynamic modeling of the uranium-oxygen (U−O) system, which is of first importance in the development of a nuclear thermodynamic database, has been performed. The thermodynamic properties of the phases present in the U−O system are described using the compound energy model with ionic constituents for the solids and an ionic two­sublattice model for the liquid. For the uranium dioxide, the structure is described using three sublattices, one for the cations U3+, U4+ and U6+, one for the normal site of oxygen ions, and one for the interstitial oxygen ions. Vacancies are included in both oxygen sublattices. In this first approach, the homogeneity ranges of the U4O9-y and U3O8-y compounds are not represented. Phase diagram and thermodynamic properties, then, have been calculated from the optimized Gibbs energy parameters, assuming that the system is in thermodynamic equilibrium, i.e. by finding the minimum for the total free energy of the system. The thermodynamic calculation is conducted through CALPHAD (Calculation Phase Diagram) approach, with the help from the Thermo-Calc code. The results obtained show that the consistency between the calculated results and the experimental data is quite satisfactory. FREE TERMS: Nuclear fuel, Uranium oxide, Oxygen potential, Modeling, Thermodynamics ABSTRAK PEMODELAN TERMODINAMIK SISTEM URANIUM-OKSIGEN. Pemodelan termodinamik sistem uranium-oksigen (U−O), yang penting sekali bagi pengembangan database termodinamik nuklir, telah dilakukan. Sifat-sifat termodinamik fasa-fasa yang ada dalam sistem U−O diGambarkan menggunakan model ‘energi senyawa’ dengan model ‘konstituen ionik’ untuk fasa-fasa padat dan model ‘dua sub-lapis ionik’ untuk fasa cair. Sementara itu, struktur uranium dioksida diGambarkann dengan model ‘tiga sub-lapis ionik’, satu sub-lapis untuk kation U3+, U4+ dan U6+, satu sub-lapis untuk kisi normal ion-ion oksigen dan satu sub-lapis lagi untuk interstisi ion-ion oksigen. Kekosongan-kekosongan dimasukkan ke dalam kedua sub-lapis oksigen. Pada kajian awal ini, rentang homogenitas senyawa U4O9-y dan U3O8-y tidak diberikan. Selanjutnya, diagram fasa dan sifat termodinamik dihitung dari optimasi parameter energi Gibbs, dengan asumsi bahwa sistem berada dalam kesetimbangan termodinamik, yaitu dengan mencari harga minimum dari energi bebas total sistem. Perhitungan dilakukan dengan pendekatan metode CALPHAD, dengan bantuan paket program Thermo-Calc. Hasil yang diperoleh menunjukkan konsistensi yang cukup memuaskan antara hasil perhitungan dan data eksperimen. KATA KUNCI: Bahan bakar nuklir, Uranium oksida, Potensial oksigen, Pemodelan, Termodinamika