Dipo Yudhatama
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

ANALYSIS OF LAND USE SPATIAL PATTERN CHANGE OF TOWN DEVELOPMENT USING REMOTE SENSING Samsul Arifin; nFN Mukhoriyah; Dipo Yudhatama
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 15, No 1 (2018)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1005.146 KB) | DOI: 10.30536/j.ijreses.2018.v15.a2795

Abstract

The Assessment of the physical character of a city is considered relatively easier than the social-cultural aspects. It is important to recognize the type of city form and to predict the behavior of people in the city and its surrounding. Due to those characteristics, the study of the pattern of physical development of the city is required. The objective of research is to analyze the change of spatial pattern of the city due to the city growing by remote sensing. The multitemporal data of Landsat 5/7/8 year 2000, 2006 and 2015 in Jabodetabek area were used. The classification technique had been done and it produced five classes of land uses. Those are water, built-up area, vegetation, other land use and no data. The results of the analysis in Jabodetabek area (Jakarta, Bogor, Depok, Tangerang and Bekasi) show that there was land use changes from vegetation and other land use area to built-up area with an average accuracy of 78% in each year. The pattern of physical development of the city looks linear from year 2000 until year 2006, which is confirmed as concentric pattern from year 2006 to 2015. Based on those analysis, it confirmed that the city development in Jakarta as the center was influenced by the spatial land development of the surrounding cities of Depok, Bogor, Bekasi and Tangerang. The pattern of spatial development from 2000 to 2006 in Bogor, Bekasi and Depok areas is Linear pattern, whereas from 2006 - 2015 the pattern of spatial development shows Propagation Concentric pattern. For Tangerang Region in 2000-2015 its development is patterned Propagation Concentric.
CAN THE PEAT THICKNESS CLASSES BE ESTIMATED FROM LAND COVER TYPE APPROACH? Bambang Trisakti; Atriyon Julzarika; Udhi C. Nugroho; Dipo Yudhatama; Yudi Lasmana
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 14, No 2 (2017)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1051.954 KB) | DOI: 10.30536/j.ijreses.2017.v14.a2677

Abstract

Indonesia has been known as a home of the tropical peatlands. The peatlands are mainly in Sumatera, Kalimantan and Papua Islands. Spatial information on peatland depth is needed for the planning of agricultural land extensification. The research objective was to develop a preliminary estimation model of peat thickness classes based on land cover approach and analyse its applicability using Landsat 8 image. Ground data, including land cover, location and thickness of peat, were obtained from various surveys and peatlands potential map (Geology Map and Wetlands Peat Map). The land cover types were derived from Landsat 8 image. All data were used to build an initial model for estimating peat thickness classes in Merauke Regency. A table of relationships among land cover types, peat potential areas and peat thickness classes were made using ground survey data and peatlands potential maps of that were best suited to ground survey data. Furthermore, the table was used to determine peat thickness classes using land cover information produced from Landsat 8 image. The results showed that the estimated peat thickness classes in Merauke Regency consist of two classes, i.e., very shallow peatlands and shallow peatlands. Shallow peatlands were distributed at the upper part of Merauke Regency with mainly covered by forest. In comparison with Indonesia Peatlands Map, the number of classes was the two classes. The spatial distribution of shallow peatlands was relatively similar for its precision and accuracy, but the estimated area of shallow peatlands was greater than the area of shallow peatlands from Indonesia Peatlands Map. This research answered the question that peat thickness classes could be estimated by the land cover approach qualitatively. The precise estimation of peat thickness could not be done due to the limitation of insitu data.  
ANALYSIS OF LAND USE SPATIAL PATTERN CHANGE OF TOWN DEVELOPMENT USING REMOTE SENSING Samsul Arifin; Mukhoriyah; Dipo Yudhatama
International Journal of Remote Sensing and Earth Sciences Vol. 15 No. 1 (2018)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2018.v15.a2795

Abstract

The Assessment of the physical character of a city is considered relatively easier than the social-cultural aspects. It is important to recognize the type of city form and to predict the behavior of people in the city and its surrounding. Due to those characteristics, the study of the pattern of physical development of the city is required. The objective of research is to analyze the change of spatial pattern of the city due to the city growing by remote sensing. The multitemporal data of Landsat 5/7/8 year 2000, 2006 and 2015 in Jabodetabek area were used. The classification technique had been done and it produced five classes of land uses. Those are water, built-up area, vegetation, other land use and no data. The results of the analysis in Jabodetabek area (Jakarta, Bogor, Depok, Tangerang and Bekasi) show that there was land use changes from vegetation and other land use area to built-up area with an average accuracy of 78% in each year. The pattern of physical development of the city looks linear from year 2000 until year 2006, which is confirmed as concentric pattern from year 2006 to 2015. Based on those analysis, it confirmed that the city development in Jakarta as the center was influenced by the spatial land development of the surrounding cities of Depok, Bogor, Bekasi and Tangerang. The pattern of spatial development from 2000 to 2006 in Bogor, Bekasi and Depok areas is Linear pattern, whereas from 2006 - 2015 the pattern of spatial development shows Propagation Concentric pattern. For Tangerang Region in 2000-2015 its development is patterned Propagation Concentric.
CAN THE PEAT THICKNESS CLASSES BE ESTIMATED FROM LAND COVER TYPE APPROACH? Bambang Trisakti; Atriyon Julzarika; Udhi C. Nugroho; Dipo Yudhatama; Yudi Lasmana
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 2 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2017.v14.a2677

Abstract

Indonesia has been known as a home of the tropical peatlands. The peatlands are mainly in Sumatera, Kalimantan and Papua Islands. Spatial information on peatland depth is needed for the planning of agricultural land extensification. The research objective was to develop a preliminary estimation model of peat thickness classes based on land cover approach and analyse its applicability using Landsat 8 image. Ground data, including land cover, location and thickness of peat, were obtained from various surveys and peatlands potential map (Geology Map and Wetlands Peat Map). The land cover types were derived from Landsat 8 image. All data were used to build an initial model for estimating peat thickness classes in Merauke Regency. A table of relationships among land cover types, peat potential areas and peat thickness classes were made using ground survey data and peatlands potential maps of that were best suited to ground survey data. Furthermore, the table was used to determine peat thickness classes using land cover information produced from Landsat 8 image. The results showed that the estimated peat thickness classes in Merauke Regency consist of two classes, i.e., very shallow peatlands and shallow peatlands. Shallow peatlands were distributed at the upper part of Merauke Regency with mainly covered by forest. In comparison with Indonesia Peatlands Map, the number of classes was the two classes. The spatial distribution of shallow peatlands was relatively similar for its precision and accuracy, but the estimated area of shallow peatlands was greater than the area of shallow peatlands from Indonesia Peatlands Map. This research answered the question that peat thickness classes could be estimated by the land cover approach qualitatively. The precise estimation of peat thickness could not be done due to the limitation of insitu data. Â