Dede Dirgahayu Domiri
Remote Sensing Application Center, LAPAN

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

IDENTIFICATION OF LAND SURFACE TEMPERATURE DISTRIBUTION OF GEOTHERMAL AREA IN UNGARAN MOUNT BY USING LANDSAT 8 IMAGERY Udhi C. Nugroho; Dede Dirgahayu Domiri
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 2 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1019.167 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2708

Abstract

Indonesia located at the confluence of Eurasian tectonic plate, Australian tectonic plate and the Pacific tectonic plate. Therefore, Indonesia has big geothermal potential. One of the areas that has geothermal potential is Ungaran Mount. Remote sensing technology can have a role in geothermal exploration activity to map the distribution of land surface temperatures associated with geothermal manifestations. The advantages of remote sensing are able to get information without having to go directly to the field with a large area, and it takes quick, so that the information can be used as an initial reference exploration activities. This study aimed to obtain the distribution of land surface temperature as a regional analysis of geothermal potential. The method of this research was a correlation of brightness temperature (BT) Landsat 8 with land surface temperature (LST) MODIS. The results of correlation analysis showed the R2 value was equal to 0.87, it shows that between BT Landsat 8 and LST MODIS has a very high correlation. Based on Landsat 8 LST imagery correction, the average of fumarole temperature and hot spring is 240C. Fumarole and hot spring are located in dense vegetation land which has average temperature around 26.90C. Land surface temperature Landsat 8 can not be directly used to identify geothermal potential, especially in the dense vegetation area, due to the existence of dense vegetation which can absorb heat energy released by geothermal surface feature.