Claim Missing Document
Check
Articles

Found 2 Documents
Search

DETECTING DEFORMATION DUE TO THE 2018 MERAPI VOLCANO ERUPTION USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) FROM SENTINEL-1 TOPS Suwarsono Suwarsono; Indah Prasasti; Jalu Tejo Nugroho; Jansen Sitorus; Rahmat Arief; Khalifah Insan Nur Rahmi; Djoko Triyono
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 16, No 1 (2019)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1436.684 KB) | DOI: 10.30536/j.ijreses.2019.v16.a3145

Abstract

This paper describes the application of Sentinel-1 TOPS (Terrain Observation with Progressive Scans), the latest generation of SAR satellite imagery, to detect displacement of the Merapi volcano due to the May–June 2018 eruption. Deformation was detected by measuring the vertical displacement of the surface topography around the eruption centre. The Interferometric Synthetic Aperture Radar (InSAR) technique was used to measure the vertical displacement. Furthermore, several Landsat-8 Thermal Infra Red Sensor (TIRS) imageries were used to confirm that the displacement was generated by the volcanic eruption. The increasing temperature of the crater was the main parameter derived using the Landsat-8 TIRS, in order to determine the increase in volcanic activity. To understand this phenomenon, we used Landsat-8 TIRS acquisition dates before, during and after the eruption. The results show that the eruption in the May–June 2018 period led to a small negative vertical displacement. This vertical displacement occurred in the peak of volcano range from -0.260 to -0.063 m. The crater, centre of eruption and upper slope of the volcano experienced negative vertical displacement. The results of the analysis from Landsat-8 TIRS in the form of an increase in temperature during the 2018 eruption confirmed that the displacement detected by Sentinel-1 TOPS SAR was due to the impact of volcanic activity. Based on the results of this analysis, it can be seen that the integration of SAR and thermal optical data can be very useful in understanding whether deformation is certain to have been caused by volcanic activity.
Plate and faults boundary detection using gravity disturbance and Bouguer gravity anomaly from space geodesy Atriyon Julzarika; Argo Galih Suhadha; Indah Prasasti
Sustinere: Journal of Environment and Sustainability Vol. 4 No. 2 (2020): pp. 55-143 (August 2020)
Publisher : Center for Science and Technology, IAIN Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22515/sustinere.jes.v4i2.108

Abstract

Nowadays, satellite technology has developed significantly. Geodesy satellites such as Grace and Grace-FO can be used for subsurface mapping. The mapping is in the form of detection of the plate details, faults, and regional geodynamic conditions. This study aims to detect plate and faults from space geodesy using the gravity disturbance and Bouguer gravity anomaly parameter. The study area is in the Sunda Strait. Gravity disturbance is one of the gravity model parameters. Gravity disturbance is the gravitational potential of the topography expressed by the spherical harmonic model and the topographic effect by Barthelmes's calculations. Gravity disturbance can visualize subsurface conditions. Bouguer gravity anomaly is needed to get the condition on subsurface objects. This parameter visualizes subsurface conditions in the form of rocks and non-rocks. These conditions can distinguish oceanic crust and continental crust. Gravity contours are needed to obtain plate and faults predictions. The results obtained are validated patterns and shapes with plate and faults secondary data. The tolerance used in this validation is 80%. The gravity disturbance parameter obtained a value of 83% in verifying the accuracy of assessment in plate and faults detection. The Bouguer gravity disturbance parameter obtained a verification value of accuracy assessment in plate detection but 65% in faults detection. This accuracy assessment uses pattern and texture parameters in detecting the similarity of two or more images. This plate and faults detection results are more detailed and can be used for geophysical, geological, earthquake, and earth dynamics applications.