Esthi Kurnia Dewi
Remote Sensing Application Center - LAPAN

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

COMPARING ATMOSPHERIC CORRECTION METHODS FOR LANDSAT OLI DATA Esthi Kurnia Dewi; Bambang Trisakti
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 13, No 2 (2016)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (833.486 KB) | DOI: 10.30536/j.ijreses.2016.v13.a2472

Abstract

Landsat data used for monitoring activities to land cover because it has spatial resolution and high temporal. To monitor land cover changes in an area, atmospheric correction is needed to be performed in order to obtain data with precise digital value picturing current condition. This study compared atmospheric correction methods namely Quick Atmospheric Correction (QUAC), Dark Object Subtraction (DOS) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). The correction results then were compared to Surface Reflectance (SR) imagery data obtained from the United States Geological Survey (USGS) satelite. The three atmospheric correction methods were applied to Landsat OLI data path/row126/62 for 3 particular dates. Then, sample on vegetation, soil and bodies of water (waterbody) were retrieved from the image. Atmospheric correction results were visually observed and compared with SR sample on the absolute value, object spectral patterns, as well as location and time consistency. Visual observation indicates that there was a contrast change on images that had been corrected by using FLAASH method compared to SR, which mean that the atmospheric correction method was quite effective. Analysis on the object spectral pattern, soil, vegetation and waterbody of images corrected by using FLAASH method showed that it was not good enough eventhough the reflectant value differed greatly to SR image. This might be caused by certain variables of aerosol and atmospheric models used in Indonesia. QUAC and DOS made more appropriate spectral pattern of vegetation and water body than spectral library. In terms of average value and deviation difference, spectral patterns of soil corrected by using DOS was more compatible than QUAC.