Orbita Roswintiarti
LAPAN

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

DROUGHT MONITORING OVER PADDY FIELD AREA IN INDRAMAYU DISTRICT, WEST JAVA USING REMOTELY SENSED INDICES - Parwati; Miao Jungang; Orbita Roswintiarti
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 5,(2008)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (509.467 KB) | DOI: 10.30536/j.ijreses.2008.v5.a1227

Abstract

In this research, several meteorological and agricultural drought indices based on remote sensing data are built for drought monitoring over paddy area in Indramayu District, West Java, Indonesia. The meteorological drought index of Standardized Precipitation Index (SPI) is developed from monthly Outgoing Long Wave Radiation (OLR) data from 1980 to 2005. The SPI represents the deficient of precipitation. Meanwhile, the agricultural drought of Vegetation Health Index (VHI) was developed from daily Moderate-resolution ImagingSpectroradiometer (MODIS) data during dry season (May-August) 2003-2006. The VHI was designed to monitoring vegetation health, soil moisture, and thermal conditions. The result shows that the agricultural drought occurate in Indramayu District, especially in the northern and southern part during the dry season in 2003 and 2004. It is found that there is a strong correlation between VHI and soil moisture measured in the field (r=0.84). Key words:Agricultural drought, Meteorological drought, Standardized Precipitation Index, Temperature Condition Index, Vegetation Condition Index.
RELATIONSHIPS BETWEEN SEA SURFACE TEMPERATURE, LARGE-SCALE ATMOSPHERIC CIRCULATION, AND CONVECTION OVER THE TROPICAL INDIAN AND PACIFIC OCEANS Orbita Roswintiarti
Jurnal Meteorologi dan Geofisika Vol 9, No 1 (2008)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (110.315 KB) | DOI: 10.31172/jmg.v9i1.19

Abstract

In this paper, the quantitative estimates of the effect of large-scale circulations on the sea surface temperature (SST)-tropical convection relationship and the effect of SST on the large-scale circulation-convection relationship over the tropical Indian and Pacific Oceans are presented. Although convection tends to maximize at warm SSTs, increased deep convection is also determined by the divergence (DIV) associated with large-scale circulation. An analysis of the relationship between SST and deep convection shows that under subsidence and clear conditions, there is a decrease in convection or increase in Outgoing Longwave Radiation (OLR) at a maximum rate of 3.4 Wm-2 °C-1. In the SST range of 25°C to 29.5°C, a large increase in deep convection (decrease in OLR) occurs in the tropical Indian and Pacific Oceans. The OLR reduction is found to be a strong function of the large-scale circulation in the Indian and western Pacific Oceans. Under a weak large-scale circulation, the rate of OLR reduction is about    -3.5 Wm-2 °C-1 to -8.1 Wm-2 °C-1. Under the influence of strong rising motions, the rate can increase to about -12.5 Wm-2 °C-1 for the same SST range. The overall relationship between large-scale circulation and deep convection is nearly linear. A maximum rate of OLR reduction with respect to DIV is -6.1 Wm-2 (10-6 s-1) in the western Pacific Ocean. It is also found that the DIV-OLR relationship is less dependent on SST. For example, the rate of OLR reduction over the western Pacific Ocean for 26°C < SST £ 27°C is -4.2 Wm-2 (10-6 s-1), while that for 28°C < SST £ 29°C is  -5.1 Wm-2 (10-6 s-1). These results are expected to have a great importance for climate feedback mechanisms associated with clouds and SST and for climate predictability.