Aulia Ilham
Institut Teknologi Bandung

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

MACHINE LEARNING-BASED MANGROVE LAND CLASSIFICATION ON WORLDVIEW-2 SATELLITE IMAGE IN NUSA LEMBONGAN ISLAND Aulia Ilham; Marza Ihsan Marzuki
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 14, No 2 (2017)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1109.335 KB) | DOI: 10.30536/j.ijreses.2017.v14.a2820

Abstract

Machine learning is an empirical approach for regressions, clustering and/or classifying (supervised or unsupervised) on a non-linear system. This method is mainly used to analyze a complex system for  wide data observation. In remote sensing, machine learning method could be  used for image data classification with software tools independence. This research aims to classify the distribution, type, and area of mangroves using Akaike Information Criterion approach for case study in Nusa Lembongan Island. This study is important because mangrove forests have an important role ecologically, economically, and socially. For example is as a green belt for protection of coastline from storm and tsunami wave. Using satellite images Worldview-2 with data resolution of 0.46 meters, this method could identify automatically land class, sea class/water, and mangroves class. Three types of mangrove have been identified namely: Rhizophora apiculata, Sonnetaria alba, and other mangrove species. The result showed that the accuracy of classification was about 68.32%.