alman muhammadin
Universitas Nusa Mandiri

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

ANALISIS SENTIMEN PADA ULASAN APLIKASI KREDIVO DENGAN ALGORITMA SVM DAN NBC alman muhammadin; Irwan Agus Sobari
Reputasi: Jurnal Rekayasa Perangkat Lunak Vol. 2 No. 2 (2021): November 2021
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/reputasi.v2i2.785

Abstract

Analisis sentimen Review Aplikasi Kredivo merupakan salah satu contoh proses untuk mengaplikasikan dari pada metode algoritma Support Vector Machine (SVM) dan Naive Bayes Classifier dalam mengklasifikasi sentiment yang tujuannya adalah membandingkan kedua metode tersebut mana yang lebih baik. Data penelitian ini diambil dari website Google Play Store, data yang diambil yaitu data teks ulasan dengan jumlah 10000 ulasan. Data tersebut melewati proses Data Preprocessing dan menggunakan algoritma Support Vector Machine (SVM) dan Naive Bayes Classifier (NBC). Setelah itu dilakukan pengujian menggunakan kombinasi dari pembagian data latih dan data uji, serta menggunakan sistem set validation, dimana 80% untuk data uji dan 20% untuk data testing. Pengujian menggunakan algoritma Support Vector Machine menghasilkan akurasi 83,3% dengan nilai presisi untuk kelas positif 77% dan kelas negatif 87% sedangkan nilai recall untuk kelas positif sebesar 89% dan 73% untuk kelas negatif. Kemudian untuk algoritma Naive Bayes Classifier sendiri menghasilkan nilai akurasi sebesar 80,8% dengan nilai presisi untuk kelas positif sebesar 81% dan untuk kelas negatif sebesar 87%, sedangkan nilai recall untuk kelas positif sebesar 88% dan untuk kelas negatif sebesar 79%. Jadi untuk tingkat keseluruhan dapat dilihat dari nilai akursi dengan algoritma SVM lebih tinggi dibanding Naive Bayes Classifier.