Ma'ruf Hadi Sutanto
Balai Penelitian dan Pengembangan Pantai, Kementerian PUPR, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Physical and Numerical Modelling of Tsunami Run-up on Seawall at Sloping Beach Ma'ruf Hadi Sutanto
Journal of the Civil Engineering Forum Vol. 5 No. 2 (May 2019)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (89.223 KB) | DOI: 10.22146/jcef.43800

Abstract

Tsunami run-up on land has a large destructive power. Further studies are deemed necessary to understand the process and characteristics of tsunami run-up in coastal areas. Seawall structures can reduce the run-up of a tsunami depending on the height of the seawall crest. Physical modeling shows that seawall may significantly reduce run-up (????) and inundation (????????). The highest reduction up to 55% where the seawall peak height is 7 cm and the water depth is 15 cm. With the same scenario in numerical modeling, the percentage reduction is 67.53%. The highest inundation (Xi) in the scenario without seawall structure is 6.081 m when the initial water depth (d0) equals to 30 cm. The result of the numerical model for the same scenario is 6.970 m. Seawall as tsunami mitigation structure is only effective when the tsunami wave is relatively low compared to the seawall height (H/ sw). Reduction percentage > 25%, with conditions that H/ sw is < 0.856 (physical model) and < 0.802 (numerical model).