Muhammad Fathur Prayuda
Universitas Trilogi

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Classification of Sad Emotions and Depression Through Images Using Convolutional Neural Network (CNN) Muhammad Fathur Prayuda
Jurnal Informatika Universitas Pamulang Vol 6, No 1 (2021): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v6i1.8433

Abstract

The human face has various functions, especially in expressing something. The expression shown has a unique shape so that it can recognize the atmosphere of the feeling that is being felt. The appearance of a feeling is usually caused by emotion. Research on the classification of emotions has been carried out using various methods. For this study, a Convolutional Neural Network (CNN) method was used which serves as a classifier for sad and depressive emotions. The CNN method has the advantage of preprocessing convolution so that it can extract a hidden feature in an image. The dataset used in this study came from the Facial expression dataset image folders (fer2013) where the dataset used for classification was taken with a ratio of 60% training and 40% validation with the results of the trained model of 60% total loss and 68% test accuracy.