Sulis Setiyawati
Universitas Sebelas Maret

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Prediksi Penambahan Kasus Covid-19 di Indonesia Melalui Pendekatan Time Series Menggunakan Metode Exponential Smoothing Calvin Mikhailouzna Gibran; Sulis Setiyawati; Febri Liantoni
Jurnal Informatika Universitas Pamulang Vol 6, No 1 (2021): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v6i1.9442

Abstract

The Covid-19 pandemic in Indonesia has emerged starting in 2020. To know the development of cases, a good calculation is needed. A prediction system can help in analyzing accurate data on positive causes, cures, and deaths. The right prediction or forecast can be the answer to the question of the impact that will occur, forecasting will provide an overview to the government and the community so that it is hoped that related parties can prepare for future impacts or even reduce the number of cases growth. In this study, the Exponential Smoothing method was used as a prediction calculation. This method is simple but effective in producing accurate predictions. Forecasting data used comes from the Indonesian government with the assumption that the data is valid and reliable. Based on research that has been carried out to predict the increase in new cases of the Indonesian National Covid-19, the best alpha (α) value is 0.33 with an SSE of 1048027,939. This shows that the number of cases is increasing. The results of forecasting in this study using the time series approach and the SES method are more suitable for predicting the percentage increase in cases than knowing the exact number.