Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pengaruh Indeks Massa Tubuh dan TrigliseridaTerhadap Gula Darah dengan Model Regresi Nonparametrik Spline Biprediktor Dewi Rahma Ente; Anna Islamiyati; Raupong Raupong
ESTIMASI: Journal of Statistics and Its Application Vol. 2, No. 2, Juli, 2021 : Estimasi
Publisher : Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/ejsa.v2i2.10262

Abstract

The regression approach can be carried out using three approaches namely parametric, nonparametric and semiparametric approaches. Nonparametric regression is a statistical method used to see the relationship between the response variable and the predictor variable when the shape of the data curve is unknown. Diabetes mellitus (DM) or commonly called diabetes is a disease that is found and observed in various parts of the world today. DM is often marked by a significant increase in blood sugar levels. In this study using blood sugar levels as response variables, body mass index and triglycerides as predictor variables. Data were analyzed using truncated linear spline with one, two and three point knots experiments. The best model is obtained based on the minimum generalized cross validation (GCV) value. The results obtained that the best model is linear spline using three point knots.
Strengthening Junior High School Members in Maros Regency in Supporting Adiwiyata Schools Naimah Aris; Jusmawati Massalesse; Nur Erawaty; Nurdin Nurdin; Kasbawati Kasbawati; Edy Saputra; Anisa Anisa; Anna Islamiyati; Sri Astuti Thamrin; Sitti Sahriman; Ainun Mawaddah Abdal; Najhah Aris; Muralia Hustim; Afifah Afifah
JATI EMAS (Jurnal Aplikasi Teknik dan Pengabdian Masyarakat) Vol 7 No 1 (2023): Jati Emas (Jurnal Aplikasi Teknik dan Pengabdian Masyarakat)
Publisher : Dewan Pimpinan Daerah (DPD) Perkumpulan Dosen Indonesia Semesta (DIS) Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36339/je.v7i1.711

Abstract

Maros Regency as an area that often receives Adipura award certificates should have schools that are also capable of achieving the Adiwiyata school title, a program that collaborates education with the environment. However, according to partners, out of 76 junior high schools in Maros Regency, only 5 have received this award. Starting from this, a team of lecturers from the Mathematics, Statistics, and Environmental Engineering study programs in collaboration with the Center for Development and Control of the Sulawesi and Maluku Ecoregions held training and mentoring activities for junior high schools in Maros Regency so that they were able to get the adiwiyata school title. Several aspects of the adiwiyata school assessment include curriculum development and environment-based learning, in this case specifically for mathematics. Organize the management of land, facilities and infrastructure in the environment around the school, in order to create an atmosphere that contributes to the formation of the character of students who are environmentally sound, build an extra-curricular climate that can contribute to environmental conservation, provide creativity and innovation for school residents in environmental protection and management efforts. The target audience for this service are students, teachers, and the junior high school environment in Maros Regency. The training activities was take place at SMP Negeri 16 Mandai, Maros Regency. The methods used include lectures, FGDs accompanied by demonstrations/practices, as well as monitoring and evaluation in class.
Comparison of Multinomial Naïve Bayes and Bernoulli Naïve Bayes on Sentiment Analysis of Kurikulum Merdeka with Query Expansion Ranking Muhammad Yusran; Siswanto Siswanto; Anna Islamiyati
Sistemasi: Jurnal Sistem Informasi Vol 13, No 1 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i1.3187

Abstract

Social media is one of the public services for conveying or obtaining news, opinions and comments on an issue. One of the social media that is in great demand by the people of Indonesia is Twitter. Kurikulum merdeka is one of the most discussed issues currently on Twitter. Kurikulum merdeka is a curriculum that incorporates varied intra-curricular learning with more optimal content to provide students adequate time to investigate ideas and build expertise. Until now, kurikulum merdeka still reaps the pros and cons. To process and analyze further regarding opinions on the kurikulum merdeka, it can be done using sentiment analysis. The high dimension of features in the classification process becoming a problem in sentiment analysis because it causes classification to be inefficient, so feature selection is needed to solve this problem. The purpose of this study was to obtain the results of the classification of kurikulum merdeka sentiments using the multinomial naïve bayes and bernoulli naïve Bayes, as well as query expansion rankings for feature selection and to compare the performance of the two classifications. Multinomial naïve bayes classification produces 106 tweets with positive sentiment and 164 tweets with negative sentiment with accuracy, recall, precision and f-measure respectively 98.889%, 98.131%, 99.057% and 98.591%, while bernoulli naïve bayes produces 95 tweets with positive sentiment and 175 tweets with negative sentiment with accuracy, recall, precision, and f-measure respectively 94.815%, 87.850%, 98.947% and 93.069% respectively. Therefore, multinomial naïve bayes classifies the kurikulum merdeka sentiment better than bernoulli naïve bayes.
Pemodelan Regresi Binomial Negatif menggunakan Estimator Jackknife Negative Binomial Ridge Regression pada Data Angka Kematian Bayi Provinsi Sulawesi Selatan Kezia Agra Palinoan; Andi Kresna Jaya; Anna Islamiyati
Basis : Jurnal Ilmiah Matematika Vol 3 No 2 (2024): BASIS: Jurnal Ilmiah Matematika
Publisher : Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/basis.v3i2.1140

Abstract

Analisis regresi Binomial Negatif adalah metode yang digunakan untuk menganalisis hubungan antara variabel prediktor terhadap variabel respon yang berdistribusi Poisson. Namun, regresi Poisson tidak dapat digunakan untuk memodelkan data dengan overdispersi maupun terdapat multikolinearitas. Untuk menyelesaikan masalah tersebut digunakan regresi Binomial Negatif dengan estimator Jackknife Negative Binomial Ridge Regression. Dalam penelitian ini, estimasi parameter regresi Binomial Negatif dengan estimator Jackknife Negative Binomial Ridge Regression diterapkan pada data tingkat kematian bayi di Sulawesi Selatan tahun 2017. Metode Jackknife berperan untuk mereduksi bias sehingga dapat diperoleh penaksiran parameter dengan bias yang kecil sedangkan metode ridge untuk menangani multikolinearitas. Metode pemilihan parameter ridge menggunakan nilai MSE terkecil. Model terbaik terbentuk pada model dengan parameter ridge k = 0.0081. Berdasarkan estimasi parameter yang terbentuk menunjukkan bahwa variabel jumlah bayi dengan berat badan lahir rendah (X1), jumah bayi yang diberi ASI eksklusif (X2), jumlah bayi yang mendapatkan vitamin A (X3), jumlah cakupan pelayanan K4 pada ibu hamil (X4), jumlah ibu hamil yang menerima imunisasi TT2+ (X5), dan jumlah kelahiran (X6) signifikan mempengaruhi jumlah kematian bayi.