Khoirina Dwi Nugrahaningtyas
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Electro-Synthetic Optimization of Host Material Based on MIL-100(Fe) Witri Wahyu Lestari; Joni Hartono; Marisa Adreane; Khoirina Dwi Nugrahaningtyas; Candra Purnawan; Sentot Budi Rahardjo
Molekul Vol 11, No 1 (2016)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (759.812 KB) | DOI: 10.20884/1.jm.2016.11.1.195

Abstract

Electro-synthesis of Metal-Organic Frameworks types of MIL-100(Fe) (MIL = Material Institute of Lavoisier) in ethanol: water (1: 1) with electrolyte TBATFB 0.1 M has been optimized by varying voltage (12, 13, 14 and 15 Volt) and temperature (room temperature, 40, 60 and 80 °C). The product showed light brown powder which upon activation becomes dark brown. Optimum condition achieved during use voltage of 15 Volts and at a temperature of 40 °C with 33% yield. The obtained material was characterized by XRD and compared to CCDC 640536 simulated patterns to confirm the phase purity of the product. As comparison hydrothermal and reflux method have been carried out. Characterization by FTIR has also undertaken to ensure the coordination between the metal cation (Fe3+) and the BTC ligand (BTC = 1,3,5-Benzene Tri Carboxylate). Meanwhile pore analysis using SAA confirmed that MIL-100(Fe) obtained by electrolysis method has a BET surface area reached till 569.191 m²/g with a total pore volume of 0.4540 cc/g and an average pore diameter reached 16 Å. Based on SEM analysis, morphology material show particle size between 0.4-8.6 μm and has a thermal stability up to 350 °C according thermo-gravimetric analysis. Due to the presence of Lewis acid sites on Fe-trimeric unit, porosity features on MIL-100(Fe) and a fairly high thermal stability, this material is potentially used as the host material for the catalyst in the conversion reactions model for green diesel production.
Physical properties and GC/MS analysis of pyrolysis oil from tire and plastic waste (HDPE/high-density polyethylene and PP/polypropylene) Al Buchori Nur Fajar; Niken Safitri; Khoirina Dwi Nugrahaningtyas
Jurnal Rekayasa Proses Vol 18 No 2 (2024): Volume 18, Number 2, 2024
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.12342

Abstract

Pyrolysis is an innovative technology that can convert various types of waste into high-value products. Pyrolysis Oil (PO) can be used as an alternative fuel. The objective of this research aims to determine the physical properties and the content of chemical compounds in the pyrolysis oil of waste tire and plastic, which are then compare to the characteristics of commercial fuel. Pyrolysis was carried at 350℃ for 4 hours using motorcycle tire and plastic waste (HDPE and PP) as raw materials. The result shows that the physical properties of PO HDPE C are similar to gasoline with a density of 0.807 g/mL, dynamic viscosity of 0.623 cP, and kinematic viscosity of 0.771 cSt. However, its calorific value is still very low. PO PP C has a calorific value almost comparable to commercial fuel of 38.24 MJ/kg. Meanwhile for PO tires, the properties unqualified characteristics of fuel. GC/MS analysis shows that PO Tires C1 has a high content of olefins and aromatic compound. PO HDPE C has a high content of paraffin and olefin compound. Pyrolysis oil of tires and plastic waste have the potential to be used as fuel. Pyrolysis conditions to produce PO with characteristics similar to fuel.