Alexander William Setiawan Putra
3rd System Development Group, Division of Development of Vehicle Technology, Wada Engineering

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimization of linear taper design of a silicon-slab waveguide Wildan Panji Tresna; Umar Ali Ahmad; Alexander William Setiawan Putra
Journal of Physics and Its Applications Vol 4, No 1 (2021): November 2021
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v4i1.12495

Abstract

A linear taper is applied on a slab waveguide to control the divergence angle of the light. In this research, the slab waveguide design consists of silicon (Si) and SiO2 as the core and the substrate, respectively. The tapered design is optimized by measuring of Full-Width Half Maximum (FWHM) of the light after propagation in a Finite Different Time Domain (FDTD). The simulation results show that the optimized taper design is obtained when its length LT and width WL are 125 µm and 10 µm, respectively. This value is the optimal length to get the small diffraction angle of light during propagation in the waveguide. Thus, the divergence angle of the input light of the slab waveguide can be minimized by using this structure. One purpose of this research is to develop a miniaturized optical technology that is like the size of a chip.