A Sabarudin
Jurusan Kimia, FMIPA Universitas Brawijaya, Indonesia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

SEQUENTIAL INJECTION-FLOW REVERSAL MIXING (SI-FRM) UNTUK PENENTUAN KREATININ DALAM URIN Sabarudin, A; Wulandari, ERN; Sulistyarti, H
Jurnal MIPA Vol 35, No 2 (2012): October 2012
Publisher : Jurnal MIPA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jumlah kreatinin yang diekskresikan melalui urin menunjukkan keadaan ginjal seseorang. Dalam penelitian ini, dikembangkan metode untuk penentuan kreatinin secara otomatis yaitu sequential injection-flow reversal mixing (SI-FRM). Pendeteksian kreatinin didasarkan pada pembentukan senyawa berwarna (merah-orange) yang dihasilkan dari reaksi antara kreatinin dan asam pikrat dalam suasana basa dan diukur pada panjang gelombang 530 nm. Reaksi pembentukan senyawa kreatinin-pikrat dilakukan melalui pembentukan segmen antara sampel dan reagen di-holding coil dan selanjutnya dilakukan proses flow reversal di-mixing coil. Parameter-parameter yang mempengaruhi metode ini diuji secara detail. Hasil penelitian menunjukkan bahwa kondisi optimum pengukuran kreatinin yaitu menggunakan konsentrasi asam pikrat 0,035 M dan NaOH 3,5%, laju alir flow reversal 5 µL/detik, laju alir produk reaksi 20 µL/detik, jumlah flow reversal empat kali dan menggunakan tiga segmen (pikrat-kreatinin-pikrat) dengan masing-masing volume segmen 100 µL. Metode SI-FRM ini telah diaplikasikan langsung untuk penentuan kadar kreatinin dalam urin dengan limit deteksi 1,7 µg/g. The amount of creatinine excreted in urine indicates kidney condition. In this experiment, the automatic determination method of determining creatinine was developed by using sequential injection-flow reversal mixing (SI-FRM). The detection of creatinine is based on the formation of a colored product (red-orange) yielded from the reaction of creatinine with picrate at alkaline medium. The absorbance is measured at wavelength of 530 nm.  The formation of creatinine-picrate complex is performed through the segment formation between sample and reagent in the holding coil and then flow reversal process in the mixing coil of SI-FRM. Several parameters affecting to this method are investigated in detail. The results show that the optimum concentrations of picric acid and NaOH are 0.035 M and 3.5%, respectively. Other optimized conditions, such as the flow reversal rate of there 5 µL/s, flow rate of product of 20 µL/s, amount of flow reversal process of four times, and segment amount of three (picrate-creatinine -picrate) with each volume of 100 µL, were obtained. This method is successfully applied to the determination of creatinine in urine with the detection limit of 1.7 µg/g.
PENGARUH PENAMBAHAN TRIPOLYFOSFAT PADA KITOSAN BEADS UNTUK ADSORPSI METHYL ORANGE Madjid, ADR; Nitsae, M; Atikah, Atikah; Sabarudin, A
Jurnal MIPA Vol 38, No 2 (2015): October 2015
Publisher : Jurnal MIPA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Modifikasi kitosan dilakukan dalam rangka meningkatkan daya adsorpsi kitosan. Penambahan tripolyfosfat (TPP) dapat mempengaruhi kinerja kitosan untuk mengadsorpsi methyl orange. Penambahan cross-linker epiklorohidrin (ECH) bertujuan untuk meningkatkan stabilitas kimianya dalam kondisi asam serta membentuk pori kitosan beads lebih besar. Penelitian ini bertujuan untuk mengetahui konsentrasi dan lama perendaman TPP optimum pada adsorpsi methyl orange oleh kitosan. Konsentrasi TPP (1%, 5%, 10% dan 15% b/v) dan lama perendaman  dalam TPP (1, 3, 6, 12, dan 24 jam) divariasi untuk mendapatkan jumlah methyl orange teradsorpsi optimum. Evaluasi kondisi optimum dilakukan dengan mengadsorpsi methyl orange dengan metode batch. Kondisi optimum diperoleh pada adsorpsi kitosan dengan konsentrasi TPP 10% dan lama perendaman selama 12 jam dengan jumlah methyl orange yang teradsorpsi mencapai 12,5 ± 0,744 mg/g. TPP berpengaruh pada pembentukan pori dan kekakuan kitosan beads. Karakterisasi SEM menunjukkan bahwa pori kitosan beads tergolong makropori dan pori partikulat. Spektra FTIR menunjukkan bahwa TPP  telah mampu melindungi gugus NH2 dari kitosan tetapi masih tertinggal di dalam kitosan beads. Mekanisme adsorpsi lebih bersifat fisik karena spektra FTIR kitosan beads setelah adsorpsi tidak jauh berbeda dengan kitosan beads sebelum adsorpsi yang ditandai oleh serapan pada 2362 cm-1 yang menunjukkan terdapatnya methyl orange di dalam kitosan beads.Chitosan modifications performed in order to increase the adsorption capacity of chitosan. Addition tripolyfosfat (TPP) can affect the chitosan performance to adsorb methyl orange. The addition of cross-linker epichlorohydrin (ECH) aims to improve chemical stability in acidic conditions and to form larger pores of chitosan beads. This study aims to determine the concentration and immersion time TPP optimum in adsorption of methyl orange by chitosan. TPP concentrations (1%, 5%, 10% and 15% w / v) and immersion time in TPP (1, 3, 6, 12, and 24 hours) were varied to obtain the optimum amount of adsorbed methyl orange. Evaluation of the optimum condition is done by adsorption of methyl orange by the batch method. The optimum conditions obtained in the adsorption of chitosan with TPP concentration of 10% and a immersion time for 12 hours with the amount of adsorbed methyl orange reached 12.5 ± 0.744 mg/g. TPP effect on pore formation and stiffness chitosan beads. SEM characterization showed that the porous of chitosan beads classified as macropore and particulate pore. FTIR spectra showed that the TPP has been able to protect the NH2 group of chitosan but still lagging behind in the chitosan beads. Adsorption mechanism is more physical interaction because of the FTIR spectra of chitosan beads after adsorption is not much different from the chitosan beads before adsorption by absorption at 2362 cm-1 which indicate the presence of methyl orange in the chitosan beads.
PENGARUH PENAMBAHAN TRIPOLYFOSFAT PADA KITOSAN BEADS UNTUK ADSORPSI METHYL ORANGE Madjid, ADR; Nitsae, M; Atikah, Atikah; Sabarudin, A
Indonesian Journal of Mathematics and Natural Sciences Vol 38, No 2 (2015): October 2015
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Modifikasi kitosan dilakukan dalam rangka meningkatkan daya adsorpsi kitosan. Penambahan tripolyfosfat (TPP) dapat mempengaruhi kinerja kitosan untuk mengadsorpsi methyl orange. Penambahan cross-linker epiklorohidrin (ECH) bertujuan untuk meningkatkan stabilitas kimianya dalam kondisi asam serta membentuk pori kitosan beads lebih besar. Penelitian ini bertujuan untuk mengetahui konsentrasi dan lama perendaman TPP optimum pada adsorpsi methyl orange oleh kitosan. Konsentrasi TPP (1%, 5%, 10% dan 15% b/v) dan lama perendaman  dalam TPP (1, 3, 6, 12, dan 24 jam) divariasi untuk mendapatkan jumlah methyl orange teradsorpsi optimum. Evaluasi kondisi optimum dilakukan dengan mengadsorpsi methyl orange dengan metode batch. Kondisi optimum diperoleh pada adsorpsi kitosan dengan konsentrasi TPP 10% dan lama perendaman selama 12 jam dengan jumlah methyl orange yang teradsorpsi mencapai 12,5 ± 0,744 mg/g. TPP berpengaruh pada pembentukan pori dan kekakuan kitosan beads. Karakterisasi SEM menunjukkan bahwa pori kitosan beads tergolong makropori dan pori partikulat. Spektra FTIR menunjukkan bahwa TPP  telah mampu melindungi gugus NH2 dari kitosan tetapi masih tertinggal di dalam kitosan beads. Mekanisme adsorpsi lebih bersifat fisik karena spektra FTIR kitosan beads setelah adsorpsi tidak jauh berbeda dengan kitosan beads sebelum adsorpsi yang ditandai oleh serapan pada 2362 cm-1 yang menunjukkan terdapatnya methyl orange di dalam kitosan beads.Chitosan modifications performed in order to increase the adsorption capacity of chitosan. Addition tripolyfosfat (TPP) can affect the chitosan performance to adsorb methyl orange. The addition of cross-linker epichlorohydrin (ECH) aims to improve chemical stability in acidic conditions and to form larger pores of chitosan beads. This study aims to determine the concentration and immersion time TPP optimum in adsorption of methyl orange by chitosan. TPP concentrations (1%, 5%, 10% and 15% w / v) and immersion time in TPP (1, 3, 6, 12, and 24 hours) were varied to obtain the optimum amount of adsorbed methyl orange. Evaluation of the optimum condition is done by adsorption of methyl orange by the batch method. The optimum conditions obtained in the adsorption of chitosan with TPP concentration of 10% and a immersion time for 12 hours with the amount of adsorbed methyl orange reached 12.5 ± 0.744 mg/g. TPP effect on pore formation and stiffness chitosan beads. SEM characterization showed that the porous of chitosan beads classified as macropore and particulate pore. FTIR spectra showed that the TPP has been able to protect the NH2 group of chitosan but still lagging behind in the chitosan beads. Adsorption mechanism is more physical interaction because of the FTIR spectra of chitosan beads after adsorption is not much different from the chitosan beads before adsorption by absorption at 2362 cm-1 which indicate the presence of methyl orange in the chitosan beads.
SEQUENTIAL INJECTION-FLOW REVERSAL MIXING (SI-FRM) UNTUK PENENTUAN KREATININ DALAM URIN Sabarudin, A; Wulandari, ERN; Sulistyarti, H
Indonesian Journal of Mathematics and Natural Sciences Vol 35, No 2 (2012): October 2012
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jumlah kreatinin yang diekskresikan melalui urin menunjukkan keadaan ginjal seseorang. Dalam penelitian ini, dikembangkan metode untuk penentuan kreatinin secara otomatis yaitu sequential injection-flow reversal mixing (SI-FRM). Pendeteksian kreatinin didasarkan pada pembentukan senyawa berwarna (merah-orange) yang dihasilkan dari reaksi antara kreatinin dan asam pikrat dalam suasana basa dan diukur pada panjang gelombang 530 nm. Reaksi pembentukan senyawa kreatinin-pikrat dilakukan melalui pembentukan segmen antara sampel dan reagen di-holding coil dan selanjutnya dilakukan proses flow reversal di-mixing coil. Parameter-parameter yang mempengaruhi metode ini diuji secara detail. Hasil penelitian menunjukkan bahwa kondisi optimum pengukuran kreatinin yaitu menggunakan konsentrasi asam pikrat 0,035 M dan NaOH 3,5%, laju alir flow reversal 5 µL/detik, laju alir produk reaksi 20 µL/detik, jumlah flow reversal empat kali dan menggunakan tiga segmen (pikrat-kreatinin-pikrat) dengan masing-masing volume segmen 100 µL. Metode SI-FRM ini telah diaplikasikan langsung untuk penentuan kadar kreatinin dalam urin dengan limit deteksi 1,7 µg/g. The amount of creatinine excreted in urine indicates kidney condition. In this experiment, the automatic determination method of determining creatinine was developed by using sequential injection-flow reversal mixing (SI-FRM). The detection of creatinine is based on the formation of a colored product (red-orange) yielded from the reaction of creatinine with picrate at alkaline medium. The absorbance is measured at wavelength of 530 nm.  The formation of creatinine-picrate complex is performed through the segment formation between sample and reagent in the holding coil and then flow reversal process in the mixing coil of SI-FRM. Several parameters affecting to this method are investigated in detail. The results show that the optimum concentrations of picric acid and NaOH are 0.035 M and 3.5%, respectively. Other optimized conditions, such as the flow reversal rate of there 5 µL/s, flow rate of product of 20 µL/s, amount of flow reversal process of four times, and segment amount of three (picrate-creatinine -picrate) with each volume of 100 µL, were obtained. This method is successfully applied to the determination of creatinine in urine with the detection limit of 1.7 µg/g.