Fitria .
Program Studi DIII Teknik Informatika Politeknik Hasnur

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

ALGORITMA NAIVE BAYES BERBASIS PARTICLE SWARM OPTIMIZATION (PSO) PADA KLASIFIKASI KELUARGA MISKIN Fitria .
Phasti: Jurnal Teknik Informatika Politeknik Hasnur Vol 4 No 01 (2018): PHASTI: April 2018
Publisher : Program Studi Teknik Informatika, Politeknik Hasnur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46365/pha.v4i01.272

Abstract

Masalah kemiskinan merupakan salah satu masalah terbesar di dunia terutama di negara berkembang yang populasi penduduknya padat. Menurut data dari Tim Nasional Percepatan Penanggulangan Kemiskinan (TNP2K) menerangkan bahwa jumlah orang yang berada di bawah garis kemiskinan adalah sebesar 32,53 juta individu. Melihat keadaan tersebut, penulis ingin mencoba menerapkan salah satu algoritma dalam data mining yaitu Naive Bayes berbasis Particle Swarm Optimization (PSO) ke dalam data yang diperoleh dari BPS Kabupaten Banjar, karena sebelumnya tidak ada penelitian yang terkait dengan tingkat kesejahteraan masyarakat di Kota Martapura menggunakan metode tersebut, sehingga dapat diketahui tingkat akurasi, presisi, recall dan AUC dari algoritma yang diusulkan dan secara tepat dapat menentukan tingkat kemiskinan di daerah tersebut dengan mengumpulkan dan mengolah data, serta secaracepat dapat mencari soslusi untuk mengurangi tingkat kemiskinan dan dapat mencegah bertambahnya angka kemiskinan di daerah tersebut. Penerapan Particle Swarm Optimization (PSO) pada Algoritma Naive Bayes menghasilkan akurasi sebesar 87.97%. Kata Kunci : Kemiskinan, Naive Bayes , Particle Swarm Optimization (PSO)