Elly Purwantini
Politeknik ELektronika Negeri Surabaya

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Perbandingan Metode Random Forest, Regresi Logistik, Naïve Bayes, dan Multilayer Perceptron Pada Klasifikasi Uang Kuliah Tunggal (UKT) Ronny Susetyoko; Wiratmoko Yuwono; Elly Purwantini; Nana Ramadijanti
Jurnal Infomedia:Teknik Informatika, Multimedia & Jaringan Vol 7, No 1 (2022): Jurnal Infomedia
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jim.v7i1.2916

Abstract

Uang Kuliah Tunggal (UKT) adalah biaya yang dikenakan kepada setiap mahasiswa untuk digunakan dalam proses pembelajaran untuk program diploma dan program sarjana dari setiap jalur penerimaan yang ditetapkan oleh pemimpin perguruan tinggi negeri (PTN). Penetapan UKT masing-masing mahasiswa baru mengikuti kebijakan masing-masing PTN, tergantung ketersediaan informasi maupun target finansial berupa pendapatan negara bukan pajak (PNBP) yang tetapkan. Rumusan atau algoritma klasifikasi UKT yang digunakan tentunya akan berdampak pada distribusi dan ekspektasi rerata UKT. Tujuan dari penelitian ini adalah membandingkan kinerja beberapa metode yaitu Random Forest, Regresi Logistik, Naïve Bayes, dan Multilayer Perceptron dalam mengklasifikasi UKT. Beberapa atribut atau fitur yang digunakan dalam model adalah status rumah, penghasilan, jumlah rumah, jumlah motor, jumlah mobil, daya listrik, kepemilikan tanah, dan jumlah anak. Dataset sebanyak 873 record dibagi menjadi data training dan data testing masing-masing sebanyak 80% dan 20%. Untuk mendapatkan metode yang terbaik, dilakukan evaluasi kinerja empat metode tersebut didasarkan pada rerata akurasi, karakteristik fungsi tingkat akurasi terhadap jumlah fitur, dan nilai ekspektasi UKT. Hasil dari penelitian ini,  metode Random Forest, Regresi Linier, dan Multilayer Perceptron dapat digunakan sebagai model klasifikasi UKT karena memiliki rerata akurasi lebih dari 85%. Namun dari ketiga model tersebut, Random Forest dapat dipilih sebagai model klasifikasi terbaik dengan rerata akurasi 97,9%. Berdasarkan karakteristik fungsi tingkat akurasi, penggunaan metode Random Forest tidak harus melibatkan banyak fitur dalam model. Dengan menerapkan metode tersebut, ekspektasi rerata UKT sebesar Rp. 3,833,811 dan simpangan baku Rp. 2,123,758.
Data Analytics to Examine Trending Topics for Indonesian Election 2019 Firman Arifin; Muhammad Hariadi; I Ketut Eddy Purnama; Budi Nur Iman; Elly Purwantini; Muhammad Anshari
Jurnal Inovtek Polbeng Seri Informatika Vol 4, No 2 (2019)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (611.933 KB) | DOI: 10.35314/isi.v4i2.984

Abstract

Understanding public interest and opinion are necessary tasks in high intense political competition. Utilizing big data analytics from social media provide an important source of information that candidates can utilize, manage and even engage them in targeted political campaigning agenda. One of the source in big data is social media’s interactions. Social media empowers public to participate proactivelyin the campaigning activities. This paper examines trends gathered from data analytics of two contenders’ group for Indonesian Election in 2019. It tracks the recent patterns of people engagement via social media analytic specifically Twitter. The study developed the analysis into the proposed model based on their trends and patterns.