Resti Noor Fahmi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP KASUS PENEMBAKAN LASKAR FPI OLEH POLRI DENGAN METODE NAIVE BAYES CLASSIFIER Resti Noor Fahmi; Nursyifa Nursyifa; Aji Primajaya
JURNAL INFORMATIKA DAN KOMPUTER Vol 5, No 2 (2021): Februari 2021
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat - Universitas Teknologi Digital Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (128.746 KB) | DOI: 10.26798/jiko.v5i2.437

Abstract

Perkembangan teknologi informasi yang semakin meningkat membuat masyarakat dengan mudah mendapatkan berbagai informasi hanya melalui media sosial seperti Twitter. Twitter adalah aplikasi jejaring sosial andalan dan sumber informasi peristiwa dunia. Salah satu informasi yang ramai diperbincangkan hingga trending topic di Twitter ialah kasus penembakan enam anggota laskar Front Pembela Islam (FPI) oleh Polri. Berbagai opini muncul mengenai kasus ini, baik opini positif, netral maupun negatif. Penelitian ini bertujuan untuk menganalisis tanggapan masyarakat mengenai peristiwa penembakan anggota laskar FPI oleh Polri, yang dapat mempengaruhi kepercayaan masyarakat akan kredibilitas kinerja Polri. Penelitian ini menggunakan metodologi Knowledge Discovery in Database (KDD) dan metode Naïve Bayes Classifier. Data yang akan digunakan ialah hashtag dari tweet dengan kata kunci #usuttuntaspenembakanLASKARFPI, #usuttuntaspembunuhan6laskarFPI, dan #TuntaskanTragediKM50 dengan jumlah dataset sebanyak 269 tweet. Hasil dari penelitian ini adalah analisis sentimen terhadap kasus penembakan anggota laskar FPI oleh Polri. Performa klasifikasi metode Naïve Bayes Classifier memperoleh hasil akurasi 98.51% , precision 98,97%, recall 97,40%, dan kappa 0,973.