Claim Missing Document
Check
Articles

Found 4 Documents
Search

Deteksi Kelainan Jantung Premature Atrial Contractions (PACS) Berbasis Kombinasi Baseline Wander dan Denoising Menggunakan PR Interval Iman Fahruzi
JURNAL INTEGRASI Vol 4 No 2 (2012): Jurnal Integrasi - Oktober 2012
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Biomedical signals such as heart signals periodically always changing frequencies over time, causing a wave of complexity and heterogeneity. Electrocardiogram (ECG), which is a picture of the heart's electrical potential activity is one of the medical tools that are widely used to make the diagnosis of heart abnormalities. In this study developed an algorithm to detect cardiac abnormalities premature based on the characteristics of ECG signal form the subject of study heart defect Atrial premature contractions (PACs). Testing is done using some data from the MIT-BIH Arrhythmia Database representing some heart abnormalities PACs. The level of accuracy when testing for R peak detection of 99.30% . While the accuracy of detection of heart abnormalities PACs when testing is 93.74%.
Asesmen ECG-Apnea Satu Sadapan untuk Peningkatan Akurasi Klasifikasi Gangguan Tidur Berdasarkan AdaBoost Iman Fahruzi; I Ketut Eddy Purnama; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 2: Mei 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1548.913 KB) | DOI: 10.22146/jnteti.v9i2.159

Abstract

Sleep disorder is a disturbed breathing flow (collapse) during sleep. The symptoms are generally undiagnosed and untreated properly so that repeated respiratory interruptions have the potential for severe sleep disorders. Electrocardiogram (ECG) recordings are practical tools used to examine the existence of sleep disorders in the heart rhythm. The ECG represents heart electrical activity in the form of P, QRS, and T waves. The number of ECG sensors is uncomfortable for the patient to record the data, increasing the recording complexity, slowing the computation, causing misinterpretation and loss of clinical information. Therefore, an early warning system is needed as a medical aid that can be diagnosed using single-lead ECG. In conducting this study, the system consists of five stages, which include the acquisition of ECG records, pre-processing, extraction of features, selection of features, and the classification process. ECG-record feature sets consist of time-domain, frequency-domain, and non-linear analysis. The AdaBoost method confirms that the model had the highest performance than the SVM, k-NN and NN. The results of the experiments thus measure the outperformed of method performance and achieved 90.1% classification accuracy for the AdaBoost classification method. Moreover, the F1 score, precision, recall, sensitivity, and specificity was reported as 90.1%, 90.3%, 90.1%, 86.9%, and 93.3%, respectively.
DESAIN DAN IMPLEMENTASI PEMOTONG RING WAFER OTOMATIS BERBASIS MIKROKONTROLER ATMEGA328 Iman Fahruzi
Technologia : Jurnal Ilmiah Vol 13, No 3 (2022): Technologia (Juli)
Publisher : Universitas Islam Kalimantan Muhammad Arsyad Al Banjari

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31602/tji.v13i3.7247

Abstract

Pemotong ring wafer merupakan alat yang digunakan untuk proses pemisahan wafer dari ring wafer, yang terdiri dari alas pemotong dan lingkaran pemotong, yang dioperasikan secara manual. Prinsip kerja dari alat ini dengan meletakkan wafer yang akan dipotong/dipisahkan dari ring wafer diantara alas pemotong dan lingkaran pemotong, kemudian lingkaran pemotong diputar searah jarum jam. Proses pemotongan ring wafer dipengaruhi oleh banyaknya wafer yang akan dipotong. Sehingga, membutuhkan waktu produksi yang cukup lama. Oleh karena itu, dirancanglah suatu  alat pemotong ring wafer otomatis berbasis mikrokontroler yang berfungsi untuk mengurangi waktu pemotongan yang diperlukan untuk memotong wafer dari ring wafer. Alat ini terdiri dari pisau pemotong dan alas pemotong yang berbentuk lingkaran dengan diameter 30 cm terbuat dari bahan akrilik, dapat bergerak 360°. Alat ini menggunakan mikrokontroler sebagai otak utama (pengendali), motor driver sebagai penggerak 2 motor stepper yang berfungsi untuk menggerakkan alas pemotong yang terbuat dari bahan akrilik dan menggerakkan 1 motor servo sebagai penggerak pisau pemotong. Alat ini dirancang dapat memotong 2 ring wafer sekaligus dalam waktu bersamaan dan kecepatan alas pemotong dapat diatur dengan menggunakan potensiometer. Berdasarkan hasil pengujian yang dilakukan, bahwa alat ini dapat memotong 2 ring wafer dalam waktu bersamaan waktu ± 12 detik, dengan kecepatan maksimal yang dimiliki motor stepper 18.3 RPM.
Identifikasi Label Kode Pipa pada Sistem Konveyor untuk Pipe Handling Berbasis Template Matching Imam Mulyono; Iman Fahruzi
ABEC Indonesia Vol. 10 (2022): 10th Applied Business and Engineering Conference
Publisher : Politeknik Caltex Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Nowadays, technological advancements are growing need for computer programs that might benefitindustrial purposes. Image recognition is crucial in technological advancements spanning from medical demandsto security and other industries. One of them is the necessity in the oil and gas industry for a computerapplication that can recognize pipe code labels, particularly in pipe handling. Because of the requirement forproduction assistance, to recognize the pipe code label image, an NI Vision control system was built. There arenumerous stages of label identification in this study, including taking photographs with a webcam camera(capture), cropping, grayscale, and saving data. The system can provide an accuracy of 88% based on test resultson 25 samples of ¾ inch PVC pipe code labels with a camera distance to the pipe code label field of 85 cm, 493color weights, and an optimal score level of 75%.