Claim Missing Document
Check
Articles

Found 4 Documents
Search

Kombinasi Algoritma Backpropagation Neural Network dengan Gravitational Search Algorithm Dalam Meningkatkan Akurasi Miftahul Falah; Dian Palupi Rini; Iwan Pahendra
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 5, No 1 (2021): Januari 2021
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v5i1.2597

Abstract

Predicting disease is usually done based on the experience and knowledge of the doctor. Diagnosis of such a disease is traditionally less effective. The development of medical diagnosis based on machine learning in terms of disease prediction provides a more accurate diagnosis than the traditional way. In terms of predicting disease can use artificial neural networks. The artificial neural network consists of various algorithms, one of which is the Backpropagation Algorithm. In this paper it is proposed that disease prediction systems use the Backpropagation algorithm. Backpropagation algorithms are often used in disease prediction, but the Backpropagation algorithm has a slight drawback that tends to take a long time in obtaining optimum accuracy values. Therefore, a combination of algorithms can overcome the shortcomings of the Backpropagation algorithm by using the success of the Gravitational Search Algorithm (GSA) algorithm, which can overcome the slow convergence and local minimum problems contained in the Backpropagation algorithm. So the authors propose to combine the Backpropagation algorithm using the Gravitational Search Algorithm (GSA) in hopes of improving accuracy results better than using only the Backpropagation algorithm. The results resulted in a higher level of accuracy with the same number of iterations than using Backpropagation only. Can be seen in the first trial of breast cancer data with parameters namely hidden layer 5, learning rate of 2 and iteration as much as 5000 resulting in accuracy of 99.3 % with error 0.7% on Backpropagation Algorithm, while in combination BP & GSA got accuracy of 99.68 % with error of 0.32%.
Integrasi SMOTE pada Naive Bayes dan Logistic Regression Berbasis Particle Swarm Optimization untuk Prediksi Cacat Perangkat Lunak Andre Hardoni; Dian Palupi Rini; Sukemi Sukemi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 5, No 1 (2021): Januari 2021
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v5i1.2616

Abstract

Software defects are one of the main contributors to information technology waste and lead to rework, thus consuming a lot of time and money. Software defect prediction has the objective of defect prevention by classifying certain modules as defective or not defective. Many researchers have conducted research in the field of software defect prediction using NASA MDP public datasets, but these datasets still have shortcomings such as class imbalance and noise attribute. The class imbalance problem can be overcome by utilizing SMOTE (Synthetic Minority Over-sampling Technique) and the noise attribute problem can be solved by selecting features using Particle Swarm Optimization (PSO), So in this research, the integration between SMOTE and PSO is applied to the classification technique machine learning naïve Bayes and logistic regression. From the results of experiments that have been carried out on 8 NASA MDP datasets by dividing the dataset into training and testing data, it is found that the SMOTE + PSO integration in each classification technique can improve classification performance with the highest AUC (Area Under Curve) value on average 0,89 on logistic regression and 0,86 in naïve Bayes in the training and at the same time better than without combining the two.
Klasifikasi Transaksi Penipuan Pada Kartu Kredit Menggunakan Metode Resampling Dan Pembelajaran Mesin Mukhlis Febriady; Samsuryadi Samsuryadi; Dian Palupi Rini
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 6, No 2 (2022): April 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v6i2.3515

Abstract

The high number of credit card fraud causes a lot of losses for both users and credit service providers. Because the rate of credit card transactions is very fast, it is necessary to detect credit card fraud as early as possible. However, another challenge that is no less important is the amount of data that is imbalanced between valid and invalid transactions. One solution to the problem of data imbalance is to use a resampling method that can improve the quantity of data so that the accuracy results are good. In this study, three types of resampling methods were implemented, SMOTE, bootstrap, and jackknife. Furthermore, to validate the success of the resampling method, three types of machine learning methods were used. The machine learning methods are SVM, ANN, and random forest. From the test results, it was found that the combination of resampling SMOTE and random forest methods produced the best performance with values of accuracy, precision, recall and F1-score of 99.95%, 81.63%, 90.91% and 86.02%, respectively.
Peningkatan Akurasi Klasifikasi Backpropagation Menggunakan Artificial Bee Colony dan K-NN Pada Penyakit Jantung Pandito Dewa Putra; Sukemi Sukemi; Dian Palupi Rini
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 5, No 1 (2021): Januari 2021
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v5i1.2634

Abstract

Heart disease has ranked as the leading cause of death in the world, accounting for around 17.3 million deaths per year with some causes, as high blood pressure, diabetes, cholesterol fluctuation, fatigue, and some others which is collected on dataset. Heart disease dataset that was applied is cleveland heart disease with fourteen (14) data atribute. The method that was applied in this research was using Backpropagation algorithm on heart disease classifying, where will be combined Artificial Bee Colony and k-Nearest Neighbor algorithm for features or atribute choose due to this technique can increase classifier model accuracy which is produced as much as 94,23%.