Claim Missing Document
Check
Articles

Found 2 Documents
Search

Mechanical and hydrological time-dependent properties of granulated blast furnace slag-sand mixture in soft ground improvement T. Sakata; N. Yasufuku; R. Ishikura; A. Alowaisy
Lowland Technology International Vol 20 No 3, Dec (2018)
Publisher : International Association of Lowland Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Every year about 20 million tons of Granulated Blast Furnace Slag (GBFS) are produced as a manufacturing byproduct. GBFS is mainly utilized in cement production accounting for 70% of the total utilized weight, while the geotechnical engineering applications accounts for 2%. Therefore, finding innovative utilization methods is a necessity. It was reported that the GBFS can be used as substitutive material in sand compaction pile (SCP) method. This study aims at evaluating the time-dependent mechanical, hydrological and chemical properties of the GBFS and the GBFS-sand mixtures. It was found that for early hydration stage, the hydrological and mechanical properties of the GBFS depends on the microstructure of the material, while the generation of the calcium silicate hydrate can be neglected. On the other hand, for longer curing time the influence of the calcium hydrate silicate generation becomes significant. Finally, it was concluded that mixing the GBFS with sand is a simple efficient way to control the time dependent mechanical, hydrological and chemical properties of the GBFS, however, the combined effect of the hydration reaction rate and the void ratio developments in response to the mixing ratio and the curing time should be properly considered to optimize utilizing the GBFS.
Characteristics of the second stage of evaporation and water redistribution through double layered sandy soil profiles A. Alowaisy; N. Yasufuku
Lowland Technology International Vol 20 No 3, Dec (2018)
Publisher : International Association of Lowland Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Evaporation from porous media involves a complex pore scale water and vapor transportation that directly affects the liquid phase distribution and fluxes. The presence of textural contrast boundary in multilayered profiles adds to the complexity. This study aims at evaluating the textural contrast boundary depth and individual layer thickness influence on the actual evaporation and water storage through double-layered soil profiles. For coarse overlying fine sand, it was found that the top layer small capillaries contribute to the majority of water lost through the falling rate stage. Considering fine overlying coarse sand profiles, the pumping phenomenon from the bottom coarse layer to the top fine layer occurs before the arrival of the drying front to the textural boundary due to the increasing suction forces within the top fine layer. The water storage capability of double layered soil profiles depends highly on the top to the bottom small capillaries ratio multiplied by the layer thickness ratio. Regardless the atmospheric conditions and layering sequence, it was concluded that the shallower the textural contrast boundary results in decreasing the total duration required to achieve the residual evaporation stage thus leads to higher water storage capabilities through the first and second evaporation stages.