Ziza Amira Syafini
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

KLASIFIKASI TWEET KONDISI LALU LINTAS KOTA JAKARTA DENGAN PENERAPAN METODE K-NEAREST NEIGHBOR Ziza Amira Syafini; Muhammad Nasrun; Casi Setianingsih
TEKTRIKA Vol 3 No 1 (2018): TEKTRIKA Vol.3 No.1 2018
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/tektrika.v3i1.2212

Abstract

Setiap tahun, jumlah kendaraan di Jakarta semakin meningkat. Namun, peningkatan jumlah kendaraan bermotor di Jakarta tidak sebanding dengan penambahan ruas jalan. Kondisi ini menyebabkan terganggunya kelancaran lalu lintas dan menimbulkan titik-titik kemacetan. Untuk mengantipasi terjebak dalam kemacetan, pengguna lalu lintas mencari dan saling bertukar informasi tentang kemacetan di media sosial. Salah satu media sosial yang sering digunakan masyarakat untuk menyebarkan informasi adalah Twitter. Penelitian ini dilakukan untuk memgklasifikasi kondisi lalu lintas berdasarkan data yang didapatkan dari Twitter. Data diklasifikasikan menjadi 3 kondisi yaitu lancar, padat dan macet. Metode yang digunakan pada penelitian ini adalah k-Nearest Neighbor. Dari beberapa uji skenario yang dijalankan, didapatkan hasil rata-rata-rata akurasi di atas 70%. Nilai k yang optimal pada penelitian ini adalah 8.