Cece Kustiawan
Jurusan Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

HIMPUNAN KOMPAK PADA RUANG METRIK Cece Kustiawan
Jurnal Infinity Vol 1, No 2 (2012): Volume 1 Number 2, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (246.338 KB) | DOI: 10.22460/infinity.v1i2.p138-147

Abstract

Makalah ini menyajikan definisi dan teorema-teorema himpunan kompak yang bertujuanuntuk menentukan kekompakan suatu himpunan pada ruang metrik. Misalkan E adalah suatuhimpunan yang tidak kosong pada ruang metrik Kata Kunci : Ruang Metrik, Persekitaran, Titik Limit, Interval Bersarang, Selimut Terbuka, Himpunan Terbuka, Himpunan Tertutup, dan Himpunan Terbatas.  This paper presents the definitions and theorems of compact set which aimed to determinethe compactness of a set in a metric space. Suppose E is a non-empty set in a metric spaceKeywords : Metric spaces, Neighborhood, Limit point, Nested interval, Open covering, Open set, Closed set, and Boundary set.
KEKONTINUAN FUNGSI PADA RUANG METRIK Cece Kustiawan
Jurnal Infinity Vol 2, No 1 (2013): Volume 2 Number 1, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (685.389 KB) | DOI: 10.22460/infinity.v2i1.p55-64

Abstract

Pengertian fungsi di kalkulus adalah pemetaan dari himpunan bilangan real ke himpunan bilangan real dengan fungsi jaraknya adalah nilai mutlak. Pada makalah ini akan disajikan pengertian fungsi dari suatu ruang metrik ke ruang metrik yang lain yang fungsi jaraknya mungkin saja berbeda. Selanjutnya akan dibicarakan mengenai limit fungsi pada ruang metrik, kekontinuan fungsi pada ruang metrik, fungsi kontinu seragam pada ruang metrik, kekompakan fungsi pada ruang metrik, dan teorema-teorema yang berhubungan dengan hal tersebut. Kata Kunci    : Ruang Metrik, Limit Fungsi, Fungsi Kontinu, Fungsi Kompak. Notion of a function in calculus is a mapping from the set of real numbers to the set of real numbers with absolute value it is. On this paper will be presented the notion of functions of a metric space into the other metric space with the functions of the distance is probably different. Next will be discussed regarding the limit of a function on a metric space, the continuous function on metric spaces, uniform continuity on the space metric, a metric space compactness function and theorems that relates to it. Key words     :  Metric Space, Limit Of The Function, The Continuous Function, Compact Function.
Pemodelan Matematika untuk Aliran Darah dengan Tekanan yang Berubah Secara Periodik M. Rizqi Ramadhan; Kartika Yulianti; Cece Kustiawan
Jurnal EurekaMatika Vol 9, No 1 (2021): Jurnal Eurekamatika
Publisher : Universitas Pendidikan Indonesia (UPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (523.597 KB) | DOI: 10.17509/jem.v9i1.34310

Abstract

Darah mengalir setiap detik di dalam seluruh tubuh. Aliran darah yang membawa zat-zat yang diperlukan untuk aktivitas organ-organ tubuh, seperti oksigen dan zat-zat nutrisi lainnya. Aliran darah yang terjadi akibat dari perubahan tekanan darah secara periodik menyebabkan kecepatan aliran darah berubah-ubah di setiap waktu. Tujuan penelitian ini membuat model matematika untuk kecepatan aliran darah dengan tekanan yang berubah. Model tersebut dibangun dari persamaan Navier Stokes untuk kecepatan aliran fluida satu arah dengan koordinat polar silinder dan persamaan kontinuitas. Pencarian solusi analitik dari model dilakukan dengan metode pemisahan variable. Berdasarkan model tersebut diperoleh profil kecepatan alirah darah dan faktor-faktor yang mempengaruhinya yaitu jari-jari pembuluh darah, amplitudo gradien tekanan darah, frekuensi gradien tekanan darah dan viskositas kinematik darah.
OPTIMIZATION OF LEARNING MANAGEMENT SYSTEM BASED ON DIGITAL MODULES IN POST- COVID -19 PANDEMIC DIFFERENTIAL CALCULUS COURSES Entit Puspita; Ririn Sispiyati; Cece Kustiawan
Jurnal Pengajaran MIPA Vol 27, No 2 (2022): JPMIPA: Volume 27, Issue 2, 2022
Publisher : Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18269/jpmipa.v27i2.52225

Abstract

This study aims to describe the experiences experienced by students regarding optimizing the use of digital module-based LMS in post-pandemic differential calculus lectures. This study's qualitative descriptive method was chosen and involved 46 third-semester students at one of the tertiary institutions in Indonesia who have experienced online and offline classes. Questionnaire and interview data analysis was carried out through identification, clarification, reduction, analysis, and description techniques according to the problem under study. The study results show that the sudden shift from face-to-face to online learning has positive aspects in the form of documentation of lecture activities and presentation of digital-based and varied lecture content. The learning videos were most in demand by the participants because they had advantages over other displays. The weaknesses in implementing online lectures are more technically related (internet or electricity network stability). The positive things detected from online courses can be followed up after the pandemic, especially in the development of LMS content which can be integrated into face-to-face classes
HIMPUNAN KOMPAK PADA RUANG METRIK Cece Kustiawan
Jurnal Infinity Vol 1 No 2 (2012): Jurnal Infinity Volume 1 No 2
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/infinity.v1i2.p138-147

Abstract

Makalah ini menyajikan definisi dan teorema-teorema himpunan kompak yang bertujuanuntuk menentukan kekompakan suatu himpunan pada ruang metrik. Misalkan E adalah suatuhimpunan yang tidak kosong pada ruang metrik Kata Kunci : Ruang Metrik, Persekitaran, Titik Limit, Interval Bersarang, Selimut Terbuka, Himpunan Terbuka, Himpunan Tertutup, dan Himpunan Terbatas.  This paper presents the definitions and theorems of compact set which aimed to determinethe compactness of a set in a metric space. Suppose E is a non-empty set in a metric spaceKeywords : Metric spaces, Neighborhood, Limit point, Nested interval, Open covering, Open set, Closed set, and Boundary set.
KEKONTINUAN FUNGSI PADA RUANG METRIK Cece Kustiawan
Jurnal Infinity Vol 2 No 1 (2013): Jurnal Infinity Volume 2 No 1
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/infinity.v2i1.p55-64

Abstract

Pengertian fungsi di kalkulus adalah pemetaan dari himpunan bilangan real ke himpunan bilangan real dengan fungsi jaraknya adalah nilai mutlak. Pada makalah ini akan disajikan pengertian fungsi dari suatu ruang metrik ke ruang metrik yang lain yang fungsi jaraknya mungkin saja berbeda. Selanjutnya akan dibicarakan mengenai limit fungsi pada ruang metrik, kekontinuan fungsi pada ruang metrik, fungsi kontinu seragam pada ruang metrik, kekompakan fungsi pada ruang metrik, dan teorema-teorema yang berhubungan dengan hal tersebut. Kata Kunci    : Ruang Metrik, Limit Fungsi, Fungsi Kontinu, Fungsi Kompak. Notion of a function in calculus is a mapping from the set of real numbers to the set of real numbers with absolute value it is. On this paper will be presented the notion of functions of a metric space into the other metric space with the functions of the distance is probably different. Next will be discussed regarding the limit of a function on a metric space, the continuous function on metric spaces, uniform continuity on the space metric, a metric space compactness function and theorems that relates to it. Key words     :  Metric Space, Limit Of The Function, The Continuous Function, Compact Function.
Students’ Reversible Thinking Ability in Solving Quadrilateral Problems Tata Frarisia; Sufyani Prabawanto; Cece Kustiawan
Jurnal Pendidikan MIPA Vol 25, No 2 (2024): Jurnal Pendidikan MIPA
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Students’ ability to engage in reversible thinking can enhance their problem- solving skills. Reversible thinking allows students to consider various perspectives, explore different options, and determine the best solution. Therefore, this study aims to describe students’ abilities to solve reversible thinking problems in the context of quadrilaterals, specifically rectangles. This research uses a qualitative method. The participants in this study were three junior high school students from Jambi, Indonesia, who demonstrated sufficient mathematical abilities. This study found that students could solve forward-thinking problems effectively but faced challenges with reversible thinking problems. This difficulty stems from students’ lack of familiarity with problems that require reversible thinking and their struggles with modeling mathematical scenarios from word problems. The study emphasizes the need to introduce more non-routine problems and exercises that encourage the exploration of various problem-solving approaches so that students can develop more flexible thinking skills.         Keywords: reversible thinking, mathematics education, problem-solving, non-routine problem.DOI: http://dx.doi.org/10.23960/jpmipa/v25i2.pp542-553