Eko Sanjaya
IT Telkom Purwokerto

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Analisis Sentimen Pada Gambar Meme Politik Dengan Library Tesseract Dan Algoritme Support vector machine Eko Sanjaya; Agi Prasetiadi; WAHYU ANDI SAPUTRA
Journal of INISTA Vol 2 No 1 (2019): November 2019
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/inista.v2i1.96

Abstract

Meme merupakan penyebaran informasi dalam bentuk gambar. Berdasarkan data yang diperoleh, pengembangan meme mulai meningkat menjelang pemilu 2019. Informasi yang diperoleh dari meme politik beragam. Salah satunya memberikan dukungan untuk suatu partai atau tokoh politik atau digunakan untuk mengkritik / mencaci-maki partai politik atau tokoh. Sehingga diperlukan suatu sistem yang dapat mengklasifikasikan meme berdasarkan kelas Penelitian ini bertujuan untuk menciptakan sistem yang dapat mengklasifikasikan meme politik berdasarkan kelas. Algoritma yang akan digunakan dalam mengklasifikasikan adalah Support vector macine (SVM) dengan ekstraksi fitur TF-IDF. Library yang akan digunakan dalam optical character recognition (OCR) adalah Tesseract. Berdasarkan hasil pengujian diketahui bahwa akurasi yang dihasilkan oleh SVM linier lebih baik daripada SVM non-linear. Akurasi terbaik dalam SVM linear dengan kombinasi TF-IDF adalah 75.71%.