Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Faktor Exacta

Perbandingan Kinerja Algoritma K-Nearest Neighbor, Naïve Bayes Classifier dan Support Vector Machine dalam Klasifikasi Tingkah Laku Bully pada Aplikasi Whatsapp Irwansyah Saputra; Didi Rosiyadi
Faktor Exacta Vol 12, No 2 (2019)
Publisher : LPPM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/faktorexacta.v12i2.4181

Abstract

WhatsApp is the most popular messaging application in Indonesia. This causes the emergence of cyberbullying behavior by its users. This study aims to classify WhatsApp chat to two classes, namely bully and not bully. The classification algorithms used are k-NN, NBC and SVM. The results show that the SVM algorithm is better at solving this case with an accuracy of 81.58%.