Abi Kabisah Maulillah
Universitas Multimedia Nusantara

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Algoritma C-Means Clustering dan Fuzzy C-Means Clustering adhi kusnadi; Abi Kabisah Maulillah
Ultima Computing : Jurnal Sistem Komputer Vol 11 No 1 (2019): Ultima Computing : Jurnal Sistem Komputer
Publisher : Faculty of Engineering and Informatics, Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1313.538 KB) | DOI: 10.31937/sk.v11i1.953

Abstract

Salah satu operasi di dalam analisis citra adalah segmentasi citra. Pada mulanya proses segmentasi dilakukan untuk memisahkan objek dari latar belakangnya, sehingga segmentasi merupakan bagian penting dalam pengenalan objek. Saat ini segmentasi sudah mengalami perkembangan yang sangat pesat, bukan hanya untuk tujuan pengenalan objek saja tetapi juga untuk persoalan interpretasi citra, yaitu untuk mengetahui objek-objek yang termuat dalam suatu citra. Banyak algoritma sudah dikembangkan untuk proses segmentasi citra. Beberapa di antaranya adalah algoritma C-Means Clustering dan Fuzzy C-Means Clustering. Pada peneltian ini, dilakukan perbandingan antara algoritma C-Means Clustering dan Fuzzy C-Means Clustering dalam segmentasi citra. Dari beberapa hasil percobaan yang didapat dalam penelitian ini berupa sisi waktu atau kecepatan, ketelitian dan pengulangan, maka dapat disimpulkan algoritma Fuzzy C-Means Clustering adalah algoritma yang terbaik yang dapat digunakan dalam segmentasi citra karena dalam algoritma Fuzzy C-Means Clustering terdapat nilai keanggotaan atau fuzzy yang secara iteratif diperbaiki hingga mencapai keadaan konvergen.