Claim Missing Document
Check
Articles

Found 1 Documents
Search

The Effect of Stemming and Removal of Stopwords on the Accuracy of Sentiment Analysis on Indonesian-language Texts Aditya Wiha Pradana; Mardhiya Hayaty
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol 4, No 4, November 2019
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (317.101 KB) | DOI: 10.22219/kinetik.v4i4.912

Abstract

Preprocessing is an essential task for sentiment analysis since textual information carries a lot of noisy and unstructured data. Both stemming and stopword removal are pretty popular preprocessing techniques for text classification. However, the prior research gives different results concerning the influence of both methods toward accuracy on sentiment classification. Therefore, this paper conducts further investigations about the effect of stemming and stopword removal on Indonesian language sentiment analysis. Furthermore, we propose four preprocessing conditions which are with using both stemming and stopword removal, without using stemming, without using stopword removal, and without using both. Support Vector Machine was used for the classification algorithm and TF-IDF as a weighting scheme. The result was evaluated using confusion matrix and k-fold cross-validation methods. The experiments result show that all accuracy did not improve and tends to decrease when performing stemming or stopword removal scenarios. This work concludes that the application of stemming and stopword removal technique does not significantly affect the accuracy of sentiment analysis in Indonesian text documents.