Danny Soetrisnanto
Jurusan Teknik Kimia, Fakultas Teknik, Universitas Diponegoro Jl. Prof Sudharto Tembalang Semarang, 50239

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

CO-COMBUSTION SLUDGE IPAL PLTU TANJUNG JATI B UNIT 1&2 DENGAN BATUBARA : TINJAUAN ENERGI TERMAL PEMBAKARAN DAN PENGARUH TERHADAP EMISI SOX DAN SLAGGING PADA BOILER SAC, Ragil Darmawan; Aryanti, Nita; Soetrisnanto, Danny
METANA Vol 9, No 01 (2013): Juli 2013
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (215.475 KB) | DOI: 10.14710/metana.v9i01.7207

Abstract

Abstract Electricity production process at TanjungJati B unit 1&2 Power Plant is also producing B3 waste (sludge) obtained from waste water treatment plant. E-Green principles can encourage company to reduce amount of waste generated. A co-combustion process (re-combusting the sludge with coal in boiler) can be applied to reduce the sludge waste. Previous study literature shows there is no experiment related co-combustion between sludge and coal. Moreover, characteristic of sludge (proximate, ultimate, chemical composition and temperature of ash fusion) effective for combustion and the process are unknown. The aims of this research are to find sludge characteristic, to evaluate caloric value from sludge combustion, to study the effect of co-combustion coal-sludge to emission and potential of slagging formation. The research carried out by proximate analysis (moisture, ash, volatile matter, sulfur and caloric content), ultimate analysis (C, H, S, N, and O), chemical composition of ash (SiO2, Al2O3, Fe2O3, CaO, MgO, K2O, Na2O, TiO2, and P­2O5), and ash fusion temperature. Results showedthat thecaloricvalue, sulfurandCaO content are differentsludgewithcoal. The caloric value of sludge is 428.22kcal/kg, sulfur content is 12.46% and CaO content is 34.11%. Caloric value of coal is 6125 kcal/kg, sulfur content is 1.14% and CaO content is 1.73%. The sulfur contentrepresentthe amount of produced SOxemissionsdue to there is no sulfur content at formed ash. The combustion with coal produced 427.318 mg/Nm3 SOx emission. The mixingratiothatstillmeets the standardis(15:1) with711.547mg/Nm3 of SOx emission. Mixing ratio variation show that higher ratio gives higher caloric value, lower sulfur content and decrease slagging index. Based on existing boiler requirement conditions, the mixing ratio of (20:1) and (15:1) is applicable due to have enough caloric value, low slagging index, and not exceed the limit for emission.The optimum condition for co-combustion in this research is ratio (15:1). Higher ratio is recommended for application of co-combustion due to result higher caloric value, lower emission and lower slagging index.  38Keywords :Co-combustion, Batubara, Sludge IPAL, Slagging
VCO Production from Fresh Old Coconut Bunch by Circulating and Pumping Method Azimatun Nur, Muhamad Maulana; Mulyono, Joko; Soetrisnanto, Danny
International Journal of Renewable Energy Development Vol 1, No 1 (2012): February 2012
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.1.1.28-31

Abstract

VCO (Virgin Coconut Oil) is one of coco-diesel source, made without high heating and chemicals. Commercial processes production, such fermentation and centrifugation usually need more time and expensive in cost and investment. Circulating by pumping through a nozzle is a new process method invented to produce VCO. The process followed by coalescence method, breaking emulsion by hitting particles through pipe and nozzle. The problem of this method was that the product gave lower yield than another method and not yet qualified. This research was purposed to discover correlation between pressure and time of circulation variables against yield and content (FFA, Peroxide, water content) represented by SNI (national Indonesian standard). Producing VCO initiated by producing coconut milk from fresh old coconut, then each 1 litre milk were pumped through the pipe and nozzle with variation of circulations pressures and time. The results were decanted for 10 hours so the oil and water would be separated. The oil at upper layer was taken as final product. Then the last step was analysed the oils and oil cake (blondo). The results showed that pressure and time of circulating variables gave impact to the yield. On optimum variables, 2 atm pressure and 15 minutes of circulating gave better results with 97% yield. This operating variables also affecting oil quality. The minimum water content is 0.1%, free fatty acid is 0.18% and peroxide value is 2 mg/kg eq. The results showed that all of parameters meet the SNI standard.