Jonathan Radot Fernando
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Spam Classification on 2019 Indonesian President Election Youtube Comments Using Multinomial Naïve-Bayes Jonathan Radot Fernando; Raymond Budiraharjo; Emeraldi Haganusa
Indonesian Journal of Artificial Intelligence and Data Mining Vol 2, No 1 (2019): March 2019
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v2i1.6445

Abstract

Text classification are used in many aspect of technologies such as spam classification, news categorization, Auto-correct texting. One of the most popular algorithm for text classification nowadays is Multinomial Naïve-Bayes. This paper explained how Naïve-Bayes assumption method works to classify 2019 Indonesian Election Youtube comments. The output prediction of this algorithm is spam or not spam. Spam messages are defined as racist comments, advertising comments, and unsolicited comments. The algorithms text representation method used bag-of-words method. Bag-of-words method defined a text as the multiset of its words. The algorithm then calculate the probability of a word given the class of spam or not spam. The main difference between normal Naïve-Bayes algorithm and Multinomial Naïve-Bayes is the way the algorithm treats the data itself. Multinomial Naïve-Bayes treats data as a frequency data hence it is suitable for text classification task.