Claim Missing Document
Check
Articles

Found 10 Documents
Search

Sistem Informasi Inventory Pengeboran Minyak Menerapkan Metode Material Requirement Planning (MRP) Rice Novita; Ressy Afrianti
Seminar Nasional Teknologi Informasi Komunikasi dan Industri 2012: SNTIKI 4
Publisher : UIN Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Inventory Information System is an information system which manages data transactions and inventory in the warehouse. Implementation of this research was conducted at TIMAS SUPLINDO Duri. TIMAS SUPLINDO Duri is one of the contractors company which cooperate with Chevron and focus on oil drilling is engaged in oil drilling. Inventory of material on TIMAS SUPLINDO Duri not be well planned so that the inventory of existing materials in the company is often a delay in delivery so that the oil drilling process could not proceed smoothly. Objectives to be achieved in this study was to plan the inventory of materials used in oil drilling process which is on TIMAS SUPLINDO thorns. Reasons for using the method of Material Requirements Planning (MRP) is expected to take into account the amount of material goods with the required capacity of production and material procurement time appropriately based on the size and type specified.The output is obtained using the method of material requirements planning (MRP) was able to determine what, when, and how the number of components and materials required to meet the needs of a production planning oil drilling.Key words: Inventory, Material Requirements Planning (MRP), TIMAS SUPLINDO Duri,
SISTEM INFORMASI PENJUALAN PUPUK BERBASIS E-COMMERCE Rice Novita; Novita Sari
Jurnal Teknoif Teknik Informatika Institut Teknologi Padang Vol 3 No 2 (2015): JURNAL TEKNOIF ITP
Publisher : ITP Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (289.843 KB) | DOI: 10.21063/jtif.2015.V3.2.1-6

Abstract

Kebutuhan Pupuk dalam bidang pertanian sangatlah penting. Untuk membantu kesuburan tanah dan tanaman sehingga mendapatkan hasil yang bagus. PT. Pertani (Persero) merupakan perusahaan yang bergerak dibidang pendistribsian pupuk cabang Riau. Di PT.Pertani (Pesero) cabang Riau ini, rangkaian proses penjadwalan pengirman pupukyang dimulai dari pembuatan booking order, penjadwalan sampai proses pengiriman semuanya masih dilakukan dengan manual. Penelitian ini akan merancang sebuah Sistem Informasi Penjualan Pupuk di PT. Pertani (Persero) cabang Riau yang akan mengurangi kesalahan pendokumentasian. Langkah untuk merancangnya adalah melalui tahapan-tahapan sebagai berikut: 1) Studi Literatur. 2) Pengumpulan data dan wawancara. 3) Menganalisa data yang telah didapat untuk mendapatkan kebutuhan pengguna. 4) Mendesain sistem menggunakan metode OOAD (Object Oriented and Design). Dengan adanya sistem penjualan pupuk ini akan dapat membantu perusahaan dalam pengelolaan penjualan pupuk, baik dari segi promosi, pembukuan penjualan pupuk dan laporan mengenai penjualan. The need for fertilizers in agriculture is very important. To help the fertility of the soil and the plants that get great results. PT. Pertani (Persero) is a company engaged in the distribution of fertilizers Riau branch. In PT.Pertani (partners) branch Riau of the scheduling process fertilizer deliveries begin this series of manufacture of booking orders, scheduling for the delivery of everything is still done by hand. This study will design a Fertilizer Sales Information System in PT. Pertani (Persero) Branch Riau that would reduce documentation errors. Steps to design it is through the following steps: 1) Literature. 2) Collection of data and interviews. 3) To analyze the data that have been obtained to get the user's needs. 4) Designing a system by using OOAD (Object Oriented and Design). With fertilizer sales system will help the company in the management of fertilizer sales, both in terms of promotion, bookkeeping fertilizer sales and sales reports.
Pemanfaatan Teknologi Informasi Dan Komunikasi (TIK) Dalam Meningkatkan Sumber Daya Manusia Yang Unggul Dan Berkualitas (Studi Kasus : Desa Kasang Bangsawan, Kecamatan Pujud, Rokan Hilir) Mulyana Widyastuti; Rice Novita
CONSEN: Indonesian Journal of Community Services and Engagement Vol. 1 No. 1 (2021): Consen: Indonesian Journal of Community Services and Engagement
Publisher : Institut Riset dan Publikasi Indonesia (IRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (665.359 KB) | DOI: 10.57152/consen.v1i1.47

Abstract

Perkembangan teknologi menimbulkan perubahan yang signifikan pada kehidupan manusia. Perkembangan teknologi merupakan penghubung manusia dengan pihak lain yang tidak lagi dibatasi oleh tempat dan waktu. Pesatnya perkembangan teknologi juga sejalan dengan peningkatan sumber daya manusia. Perkembangan akan pemanfaatan teknologi terjadi hampir seluruh lapisan masyarakat, khususnya Mahasiswa baru yang berada di Desa Kasang Bangsawan, Kecamatan Pujud, Rokan Hilir yang kurang menguasai penggunaan IT terutama pada software Microsoft Office. Permasalahan tersebut hampir dihadapi oleh semua Mahasiswa baru. Dari penyebaran kuesioner yang telah dilakukan oleh penulis, hanya 25% Mahasiswa baru yang cukup mahir dalam menggunakan Microsoft Office dan 75% Mahasiswa baru menanggapi bahwa masalah yang terjadi dikarenakan tidak adanya pelajaran mengenai TIK saat mereka berada di tingkat Sekolah Menengah Atas sehingga tingkat kemampuan mereka dalam menggunakan Microsoft Office masih dalam tahap baru memulai. Maka dari itu, Solusi yang ditawarkan yaitu melakukan Pelatihan dasar Mengenai Microsoft Office pada Mahasiswa Baru di Kecamatan Pujud, Desa Kasang Bangsawan, Rokan Hilir. Fokus pelatihan ini adalah penggunaan pada Software Microsoft Word dan Microsoft PowerPoint. Yang dilakukan di Aula SMPN 3 Pujud pada tanggal 12 September 2020 dengan objek yang di tuju adalah Mahasiswa baru. Hasil penelitian dari dilakukannya pelatihan tersebut hampir seluruh peserta pelatihan sepakat bahwa kemampuan dan pemahaman dalam menggunakan tools pada Microsoft Office (Ms Word dan Power Point) meningkat serta dapat membantu mereka dalam proses pembelajaran.
Implementasi Model Rapid Application Development untuk Pengembangan Pembelajaran Tajwid Al-Qur'an: Implementation of Rapid Application Development Model for the Development of Qur'an Tajweed Learning Rice Novita
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 3 No. 1 (2023): MALCOM April 2023
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v3i1.892

Abstract

Shaykh Manna Al-Qahthan said that the Qur'an is the message of Allah SWT for all humankind. As a country with a majority Muslim population, 87.18% based on statistical data at the end of 2010 from the Central Statistics Agency. Data from research conducted by the Institute of Al-Qur'an Sciences in 2017 noted that around 65% of Indonesian Muslim communities are illiterate in the Qur'an. Learning tajweed Al-Qur'an by taking classes directly usually will take longer to master one material because it is carried out once a week. Information Technology can be utilized in this problem. Android-based application is one of them. The focus of this research is  build a mobile application for learning Al-Qur'an recitation with the Nurul Bayan method using the Rapid Application Development system method. The results of the Blackbox test calculation on the Tajweed Learning Application are 100% and the results of the UAT test are. Based on the results of testing using the Blackbox Testing and User Acceptance Test methods, Android-based Tajweed Learning Applications can assist users in learning the basic theory of Al-Qur'an recitation with the Nurul Bayan method.
Pembimbingan Penulisan Artikel Ilmiah Bereputasi Bagi Dosen dan Mahasiswa Se-Kota Pekanbaru Rika Taslim; Rice Novita; Oktaf Brillian Kharisma; Mustakim Mustakim; Farhan Dio Pahlevi
Jurnal Pengembangan dan Pengabdian Masyarakat Multikultural Vol 1 No 1: BATIK April 2023
Publisher : Institut Riset dan Publikasi Indonesia (IRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/batik.v1i1.706

Abstract

Dosen selain mengajar mata kuliah di kampus, juga melakukan penelitian untuk mewujudkan Tri Darma Perguruan tinggi disamping pengabdian dan pengajaran. Peranan dalam perwujudan Tri Dharma Perguruan Tinggi salah satunya adalah dengan menggiatkan kemampuan menulis dan mendorong pelaksanaan publikasi ilmiah. Publikasi dosen yang berada di Provinsi Riau, masih jauh lebih rendah apabila dibandingkan dengan beberapa Universitas ternama di Indonesia, salah satunya adalah Universitas Indonesia. Dalam dokumen publikasi Sinta, kualitas Dosen yang ada di Riau perlu ditingkatkan dalam hal publikasi ilmiah. Untuk itu diperlukan suatu panduan atau bimbingan teknis dalam penulisan karya tulis ilmiah bagi Mahasiwa, baik Mahasiswa jenjang Diploma, S1, S2, maupun S3 serta Dosen. Berdasarkan hasil dari evaluasi dari kuesioner, peserta kegiatan terdiri dari Mahasiswa 15 Orang, guru 1 Orang dan Dosen 24 Orang yang berasal dari institusi-institusi lain yang ada di Riau lebih dari 85% dapat mengikuti dengan baik, lebih dari 95% mudah dan memahami materi yang disampaikan serta lebih dari 90% memiliki hasil akhir sesuai harapan.
Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor: Sentiment Analysis of PLN Mobile Application Review Using Naïve Bayes Classifier and K-Nearest Neighbor Algorithm Syafrizal Syafrizal; M. Afdal; Rice Novita
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 1 (2024): MALCOM January 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i1.983

Abstract

Bukti nyata PLN terus meningkatkan pelayanannya adalah dengan meluncurkan sebuah aplikasi yaitu PLN Mobile. Banyak pelanggan yang merasakan kemudahan dengan adanya aplikasi tersebut. Namun kini beberapa pelanggan mulai menjumpai permasalahan seperti gagal memuat lokasi saat melakukan pengaduan dan saat pembelian token dengan virtual account, saldo telah terpotong namun kode token tidak muncul. Penelitian ini melakukan analisis sentimen terhadap ulasan pengguna aplikasi PLN Mobile menggunakan pendekatan text mining. Pendekatan ini dapat melakukan klasifikasi sentimen pada ulasan pengguna dengan cepat. Data dikumpulkan menggunakan teknik scrapping pada Google Play Store dan mendapatkan 3000 baris data. Data tersebut kemudian diberi label oleh seorang pakar sehingga menghasilkan 2099 sentimen positif (69,97%), 368 netral (12,27%) dan 533 negatif (17,77%). Selanjutnya dilakukan pemodelan menggunakan algoritma NBC dan KNN dengan K-Fold Cross Validation sebagai teknik validasi. Hasilnya menunjukkan model NBC lebih baik dibandingkan KNN dengan akurasi sebesar 77,69%, recall 53,14%, precision 59,84% dan F1-Score 54,09%. Selanjutnya proses analisis dilakukan dengan visualisasi data menggunakan word cloud. Hasilnya yaitu dengan adanya aplikasi PLN Mobile memberikan kemudahan kepada pelanggan dalam menggunakan layanan PLN seperti pembelian token, pengaduan, dan berbagai fitur lainnya. Namun aplikasi PLN Mobile masih memiliki beberapa permasalahan yang sering menjadi ulasan penggunanya salah satunya adalah saat melakukan pembayaran token.
Perbandingan Evaluasi Kernel Support Vector Machine dalam Analisis Sentimen Chatbot AI pada Ulasan Google Play Store Celine Mutiara Putri; M. Afdal; Rice Novita; Mustakim Mustakim
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41354

Abstract

AI (Artificial Intelligence) is becoming very important these days due to its ability as a personal assistant to increase efficiency, automate routine tasks, and speed up manual processes. AI chatbot are one of the practical applications of AI in language understanding, have various benefits and drawbacks that cause various comments from users in the review column on the Google Play Store. This research discusses sentiment analysis of AI chatbot application reviews using four SVM kernels. Labeling uses InSet Lexicon and hyperparameters to produce the best parameters. The purpose of the research is to find out how users respond to interactions with ChatGPT, Perplexity AI, and Bing Chat and prove whether the kernel in SVM can increase the accuracy value. The percentage division between test data and training data is 70:30, 80:20, and 90:10, data labeling using 2 sentiment classes and 3 sentiment classes, and using and not using the SMOTE Oversampling technique. The experimental results obtained the highest accuracy using SVM kernel Linear scenario 90:10 with an accuracy value of 92.68%.
Analisis Sentimen Ulasan Pengguna Aplikasi Penjualan Pulsa Menggunakan Algoritma Naïve Bayes Classifier Azis Syafi'i; M. Afdal; Eki Saputra; Rice Novita
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41364

Abstract

Many credit sales applications are commonly used by outlets or counters, such as DigiPOS, Tetra Pulsa, and Orderkuota. However, there are common problems with these applications such as prices that are starting to be less competitive, difficult to use, transactions that often fail, security, service and others. Therefore, this study analyzes the sentiment of user reviews to identify the strengths and weaknesses of these apps, to help developers improve their services, and to guide agents in choosing the right app. NBC algorithm is proposed to be used for sentiment classification. The analysis results show the dominance of positive sentiments on all apps, with Tetra Pulsa having the highest positive sentiment (97.10%), followed by Orderkuota (84.40%) and DigiPOS (64.00%). Then the results of the implementation of the NBC algorithm can perform sentiment classification well. Tetra Pulsa application has an accuracy of 97.10%, Orderkuota 92.39%, and DigiPOS 91.10%. The results of this study can be considered to evaluate and improve the application so that it can provide better service to users of the credit sales application.
Analisis Sentimen Ulasan Pengguna Aplikasi Mobile Banking Menggunakan Algoritma K-Nearest Neighbor Darwin Munandar; M. Afdal; Zarnelly Zarnelly; Rice Novita
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41409

Abstract

Mobile banking is evident in the improvement of business processes in the banking industry. Even so, the m-banking application cannot be separated from the problems experienced by its users. Therefore, further analysis is required. This research proposes a sentiment analysis technique using K-Nearest Neigbor (KNN) algorithm to identify user opinions and reviews of m-banking applications. Three popular m-banking apps were selected for further analysis namely BRImo, BSI Mobile, and Livin' by Mandiri. The analysis shows that BRImo is the most popular m-banking application, with a positive sentiment percentage of 58.25%, Livin' by Mandiri with 22.50%, and BSI Mobile with the lowest percentage of 12.70%. Modeling results using the KNN algorithm with K = 3, 5 and 7 test values show K = 3 has better capabilities. Based on the application, the best modeling is produced on BRImo with 82.9% accuracy, then Livin' by Mandiri with 70.3% accuracy, and BSI Mobile with 71.35% accuracy. Analysis and visualization were also conducted using word clouds to see keywords that are often discussed in reviews. As a result, m-banking apps have problems with difficult login, complicated registration or verification, and balance deduction despite failed transfer status.
Sentiment Analysis of Gojek, Grab, Maxim Applications Using Support Vector Machine Algorithm Muhammad Iqrom; M. Afdal; Rice Novita; Medyantiwi Rahmawita; Tengku Khairil Ahsyar
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 1 (2025): Maret
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/52fycr56

Abstract

This research analyzes user sentiment towards three major online transportation applications in Indonesia—Gojek, Grab, and Maxim using the \SVM algorithm. The analysis results indicate that Maxim has the highest positive sentiment rate (42.45%) compared to Grab (32.83%) and Gojek (20.21%). Maxim's advantages lie in its competitive pricing and driver professionalism. However, Gojek recorded the best performance in sentiment classification with an accuracy of 94%, followed by Maxim (90%) and Grab (87%). The evaluation based on five main variables (general sentiment, drivers, services, applications, and pricing/costs) reveals the strengths of each application in different categories. Maxim excels in general sentiment and driver satisfaction, Grab dominates in pricing/cost, and Gojek stands out in the application category. Wordcloud visualization reveals frequently mentioned words such as "driver," "application," and "order," reflecting users' primary concerns and experiences. This research provides valuable insights for online transportation service providers to improve service quality, although it has limitations in exploring external factors such as user demographics and marketing strategies, as well as relying on a single algorithm without comparison. The choice of the SVM algorithm is based on its ability to handle well-structured data and provide high accuracy in classification. SVM is effective in finding the optimal hyperplane that clearly separates data classes, making it suitable for sentiment analysis involving multiple variables.