Dalmasius Ganjar Subagio
Pusat Penelitian Tenaga Listrik dan Mekatronik - LIPI, Komp. LIPI Bandung, Jl Sangkuriang, Gd 20, Lt 2, Bandung, Jawa Barat 40135

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Mechatronics, Electrical Power, and Vehicular Technology

The Use of Open Source Software for Open Architecture System on CNC Milling Machine Subagio, Dalmasius Ganjar; Atmaja, Tinton Dwi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 2, No 2 (2011)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.747 KB) | DOI: 10.14203/j.mev.2011.v2.105-112

Abstract

Computer numerical control (CNC) milling machine system cannot be separated from the software required to follow the provisions of the Open Architecture capabilities that have portability, extend ability, interoperability, and scalability. When a prescribed period of a CNC milling machine has passed and the manufacturer decided to discontinue it, then the user will have problems for maintaining the performance of the machine. This paper aims to show that the using of open source software (OSS) is the way out to maintain engine performance. With the use of OSS, users no longer depend on the software built by the manufacturer because OSS is open and can be developed independently. In this paper, USBCNC V.3.42 is used as an alternative OSS. The test result shows that the work piece is in match with the desired pattern. The test result shows that the performance of machines using OSS has similar performance with the machine using software from the manufacturer. 
Three axis deviation analysis of CNC milling machine Subagio, Dalmasius Ganjar; Subekti, Ridwan Arief; Saputra, Hendri Maja; Rajani, Ahmad; Sanjaya, Kadek Heri
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 10, No 2 (2019)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3373.202 KB) | DOI: 10.14203/j.mev.2019.v10.93-101

Abstract

The manufacturing technology has developed rapidly, especially those intended to improve the precision. Consequently, increasing precision requires greater technical capabilities in the field of measurement. A prototype of a 3-axis CNC milling machine has been designed and developed in the Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (RCEPM-LIPI). The CNC milling machine is driven by a 0.4 kW servo motor with a spindle rotation of 12,000 rpm. This study aims to measure the precision of the CNC milling machine by carrying out the measurement process. It is expected that the CNC milling machine will be able toperform in an optimum precision during the manufacturing process. Accuracy level testing is done by measuring the deviations on the three axes namely X-axis, Y-axis, and Z-axis, as well as the flatness using a dial indicator and parallel plates. The measurement results show the deviation on the X-axis by 0.033 mm, the Y-axis by 0.102 mm, the Z-axis by 0.063 mm, and the flatness of the table by 0.096 mm, respectively. It is confirmed that the deviation value is within the tolerance standard limits set by ISO 2768 standard. However, the calibration is required for this CNC milling machine to achieve more accurate precision. Furthermore, the design improvement of CNC milling machine and the application of information technology in accordance with Industry 4.0 concept will enhance the precision and realibility.