Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Mechatronics, Electrical Power, and Vehicular Technology

Pengurangan Subsidi BBM dan Polusi Udara Melalui Kebijakan Program Konversi dari BBM ke BBG Untuk Kendaraan di Propinsi Jawa Barat Susanti, Vita; Hartanto, Agus; Subekti, Ridwan Arief; Saputra, Hendri Maja; Rijanto, Estiko; Hapid, Abdul
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 2 (2010)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.963 KB) | DOI: 10.14203/j.mev.2010.v1.43-52

Abstract

The  number  of  vehicle  that  use  oil  (BBM)  is  increasing  every  year  in  Indonesia  while  national  oil  reserve become smaller, so that the oil should be imported. The impact of using oil are increasing subsidy and air pollution.  Thus, it is now becoming important to replace oil with another environmentally friendly energy, one of them is gas (BBG). Based on the number of vehicle and infrastructure in gas pipeline, part of northern West Java potentially can  be  chosen  for  the  implementation  of  conversion  program  to  gas  (BBG).  The number  of  vehicle  in  potential regions  such  as  Depok,  Cibinong,  Bogor,  Bekasi,  Cikarang,  Karawang,  Purwakarta,  Cirebon,  and  Bandung  are around 875,505 units. From these data, we simulated the potential profit to be gained each year by converting 10% for the first year and increasing it to 5% for every year. By investing 3.16 trillion for conversion, 14.9 trillion can be achieved in  the  form  of  fuel  subsidy  savings.  In  addition,  emission  reduction  converted  to  a  CDM  (clean development  mechanism)  can  become  local  revenues.  Total CDM generated during 5 years predicted is of U.S $ 772,385. From this study, it can be concluded that converting oil (BBM) to gas (BBG) is highly beneficial. 
Survey Potensi Pembangkit Listrik Tenaga Mikro Hidro di Kuta Malaka Kabupaten Aceh Besar Propinsi Nanggroe Aceh Darussalam Subekti, Ridwan Arief
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 1 (2010)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (999.621 KB) | DOI: 10.14203/j.mev.2010.v1.5-12

Abstract

Generator set is one of the devices able to produces electrics. Generator set used when electrics supply of PLN insufficient or even there no. This matter experienced in Kuta Malaka, Aceh Besar, Nanggroe Aceh Darussalam there will be developed a tour area. Because electrical supply from PLN not yet, power electric to support the area used generator set. Future, that tour area apply hydro power station for electrical energy requirement. From that background, the purpose of water potential survey was conducted to get beginning data and information of water power potential as reference to develop PLTMH. The potential survey cover determination of location and head measurement use global positioning system Garmin GPSMAP 76CSx. The other using altimeter, head also was measure manually used the meter by spirit level and string method. The river rate of flow measurement within measuring to speed of rivers flow use propeller devices or current meters brand Flowatch. From data of PLTMH potential survey in Kuta Malaka area known that there are three potential locations able to be developed as PLTMH with effective head 5 until 16 meter and output power 3.7 until 9.1 kW.
Direction and Policies Needed to Support Hybrid Electric Car Research Subekti, Ridwan Arief; Hartanto, Agus; Susanti, Vita
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (160.278 KB) | DOI: 10.14203/j.mev.2012.v3.1-8

Abstract

The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the problems and finds the solutions to prevent the same failure of electric car commercialization process from happening to hybrid electric car . This study was done by collecting and analyzing the primary and secondary data through interviews, discussing electric hybrid car with stakeholders, and examining earlier study results and regulations. Based on this study, several policies to support sustainability research of hybrid electric car were proposed. Some recommendations were the making of national roadmap and regulation for the usage of hybrid electric car on the road. For policy makers at LIPI, a research focus, research coordination, and pre-commercialization program were recommended.
Three axis deviation analysis of CNC milling machine Subagio, Dalmasius Ganjar; Subekti, Ridwan Arief; Saputra, Hendri Maja; Rajani, Ahmad; Sanjaya, Kadek Heri
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 10, No 2 (2019)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3373.202 KB) | DOI: 10.14203/j.mev.2019.v10.93-101

Abstract

The manufacturing technology has developed rapidly, especially those intended to improve the precision. Consequently, increasing precision requires greater technical capabilities in the field of measurement. A prototype of a 3-axis CNC milling machine has been designed and developed in the Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (RCEPM-LIPI). The CNC milling machine is driven by a 0.4 kW servo motor with a spindle rotation of 12,000 rpm. This study aims to measure the precision of the CNC milling machine by carrying out the measurement process. It is expected that the CNC milling machine will be able toperform in an optimum precision during the manufacturing process. Accuracy level testing is done by measuring the deviations on the three axes namely X-axis, Y-axis, and Z-axis, as well as the flatness using a dial indicator and parallel plates. The measurement results show the deviation on the X-axis by 0.033 mm, the Y-axis by 0.102 mm, the Z-axis by 0.063 mm, and the flatness of the table by 0.096 mm, respectively. It is confirmed that the deviation value is within the tolerance standard limits set by ISO 2768 standard. However, the calibration is required for this CNC milling machine to achieve more accurate precision. Furthermore, the design improvement of CNC milling machine and the application of information technology in accordance with Industry 4.0 concept will enhance the precision and realibility.
Pico hydro propeller turbine prototype experimental study for very low head applications Subekti, Ridwan Arief; Mohd-Zawawi, Fazila; Ismail, Kamarulafizam; Ishak, Iskandar Shah; Sudibyo, Henny; Susatyo, Anjar; Pikra, Ghalya; Radiansah, Yadi; Aziz, Amiral; Fudholi, Ahmad
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 16, No 1 (2025)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2025.1111

Abstract

There is a lot of untapped potential for low-head and very low-head (VLH) hydroelectric power in Indonesia. The challenge in developing VLH is that the locations are very difficult to access by vehicle. One example is in the interior of South Kalimantan Province, where it takes more than 12 hours to reach the location on foot. This paper discusses an experimental study of a pico hydro propeller turbine prototype for VLH applications which is suitable for use in remote areas of Indonesia. Its design is simple and lightweight, and it is made from PVC. The turbine's specifications include a power output of 250 W with a net head of 1.53 m. The turbine was designed with four different runner models, including variations in the number of blades and their geometric shapes. The runner models are type 1 and 2 with five and four blades, respectively, and type 3 (in a shallow configuration) and type 4 (in a steep configuration) with 3 blades. The generator used was a DC, 36 V, with a maximum power of 500 W, 2,500 rpm, and 1 phase. An AC lamp was used as the generator load, so an inverter from DC to AC was used in this test. The propeller turbine was tested in the laboratory. The experiments were conducted at various flow rates by adjusting the rotational speed of the supply pump and the electrical load using incandescent lamps. The test results are presented as graphs showing the relationship between flow rate and rotational speed, hydraulic and electrical power, and efficiency. The experimental results indicate that the turbine with a type 3 runner model featuring three blades in a gentle slope configuration has the highest efficiency, approximately 72.5 %.