Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENERAPAN DATA MINING PADA JUMLAH PELANGGAN PERUSAHAAN AIR BERSIH MENURUT PROVINSI MENGGUNAKAN METODE K-MEANS CLUSTERING Lestari Sinaga; Abdullah Ahmad; Muhammad Safii
Jurnal RESISTOR (Rekayasa Sistem Komputer) Vol. 2 No. 2 (2019): Jurnal RESISTOR Edisi Oktober 2019
Publisher : LPPM STMIK STIKOM Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31598/jurnalresistor.v2i2.418

Abstract

Water is one of the primary needs for humans so that everyone has the right to get clean water for their daily needs. Along with increasing population, the need for water will increase. So with that the PDAM must sell clean / decent water to its customers, clean water becomes the focus of attention and has the greatest power compared to other problems. Because water is a basic necessity, most of the companies impose rates that can be reached by the community and prices are adjusted to the growth in demand. The purpose of this research is to get a grouping of the number of customers of clean water companies in all provinces using the K-Means Algorithm, K-Means is a method for grouping data into a cluster by calculating the closest distance from a data to a centroid point. Clusters used are high level clusters (C1), medium level clusters (C2), and for low level clusters (C3). Centroid data obtained is for high-level clusters (C1) which are as many as 7710154, for medium-level clusters as much as 929586, and for low-level clusters as much as 112462. Based on the calculated data obtained high-level results, namely the province of Indonesia, for the medium level namely province North Sumatra, DKI Jakarta, West Java, Central Java and East Java, and other provinces are low levels. So that this result can be a support for the company in order to increase water needs.
IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN BARANG (STUDI KASUS : TOKO SINAR HARAHAP) Putri Mai Sarah Tarigan; Jaya Tata Hardinata; Hendry Qurniawan; Muhammad Safii; Riki Winanjaya
JUST IT : Jurnal Sistem Informasi, Teknologi Informasi dan Komputer Volume 12 No 2 Tahun 2022
Publisher : Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24853/justit.12.2.%p

Abstract

UMKM ialah kegiatan usaha kecil ekonomi rakyat yang berskala kecil dan dilindungi dari kompetisi usaha yang tak sehat dan tak setara. Wirausaha yang bergerak dibidang pertokoan memiliki prospek yang menjanjikan, karena dapat melayanin masyarakat dengan kategori ekonomi menengah kebawah dan ke atas serta bisa mempermudah masyarakat untuk berbelanja keperluan tiap hari tanpa harus belanja ke supermarket atau swalayan. Namun persediaan barang atau bahan kebutuhan yang tidak dilakukan secara optimal dapat menyebabkan kekosongan pada barang atau bahan kebutuhan tersebut. Hal tersebut juga terjadi pada toko sinar harahap yang sering mengalami kekosongan pada persediaan beberapa barang dan kebutuhan yang di cari oleh pelanggan, ini di akibatkan dari tidak adanya kebiasaan pengontrolan persediaan pada toko. Maka penelitian ini bertujuan untuk melihat barang dan kebutuhan apa saja yang dibutuhkan oleh pelanggan toko. Penelitian ini menggunakan beberapa variabel yaitu tanggal transaksi, nama produk serta jumlah penjualan/pembelian. Maka, dari hasil penelitian menggunakan algoritma apriori tersebut akan di dapat data nama barang yang paling banyak terjual untuk di jadikan sebagai antisipasi persediaan barang agar tidak mengalami kekosongan yang dapat menyebabkan pelanggan kecewaKata Kunci: persediaan, barang, penjualan, data mining, algoritma apriori