This Author published in this journals
All Journal Petir
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS) Mochamad Farid Rifai; Hendra Jatnika; Bowval Valentino
PETIR Vol 12 No 2 (2019): PETIR (Jurnal Pengkajian Dan Penerapan Teknik Informatika)
Publisher : Sekolah Tinggi Teknik - PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (681.614 KB) | DOI: 10.33322/petir.v12i2.471

Abstract

This research discusses prediction pass rates the certification microsoft office specialist 2013 version (word and excel) aimed to provide information concerning to pass rates and certification give alternative solutions to determine the program certificationi appropriate to chosen before test certification. Naive bayes used for the classification certification graduation where participants know what information pass and did not finish. Naive bayes is a classification with the probability and statistics to predict opportunities in the future based on the Provided before. In this study, system development CRISP-DM to use of the become more ordered and testing done with the BlackBox to test each function is on the application built. From the study, produce values probability of 0.001042 the accuracy of 99 %. These results, proving that naïve bayes method can be used to assist in a prediction graduation rates participants (word and excel), because it produces quite high accuracy. So participants were able to determine the certification program proper chosen before test certification.
Pengaruh Kondisi Cuaca Terhadap Serangan Hama Penggerek Batang Pada Tanaman Padi Di Desa Ciaruteun Ilir, Kec. Bungbulang, Kab. Bogor Mochamad Farid Rifai; Hendra Jatnika; Yudhy S. S Purwanto; Sely Karmila
PETIR Vol 13 No 2 (2020): PETIR (Jurnal Pengkajian Dan Penerapan Teknik Informatika)
Publisher : Sekolah Tinggi Teknik - PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33322/petir.v13i2.1041

Abstract

Perubahan iklim yang tidak menentu saat ini berdampak pada berbagai sektor termasuk pertanian, dimana salah satu dampaknya adalah meningkatnya populasi hama. Saat ini Balai Proteksi Tanaman Pangan dan Holtikultura (BPTPH) Desa Ciaruteun Ilir, Kecamatan Bungbulang, Kab. Bogor di Jawa Barat mengalami kesulitan dalam mengamati dan mencegah serangan hama, terutama hama penggerek batang. Penelitian ini membahas mengenai prediksi serangan hama penggerek batang, terutama batang padi. Penelitian ini menitik beratkan pada penerapan peringatan dini serangan hama yang didasarkan pada data klimatologi berupa suhu, kelembaban, dan curah hujan. Dari uraian tersebut, peneliti membuat sistem prediksi serangan hama padi berbasis web menggunakan metode Naïve Bayes yang diterapkan berdasarkan nilai probabilitas. Nilai probabilitas digunakan untuk memprediksi peluang di masa depan berdasarkan pada pengalaman dimasa lalu, sehingga akan memudahkan pegawai BPTPH Desa Ciaruteun Ilir dalam menganalisis, mengidentifikasi dan memantau kemunculan serangan hama penggerek batang untuk diinformasikan kepada pertani. Berdasarkan data training yang berhasil diklasifikasikan 138 data training yang di uji pada data serangan hama metode Naive Bayes berhasil memprediksi adanya serangan hama dengan persentase keakuratan sebesar 96.76%.