Claim Missing Document
Check
Articles

Found 8 Documents
Search
Journal : EMITTER International Journal of Engineering Technology

Fast Response Three Phase Induction Motor Using Indirect Field Oriented Control (IFOC) Based On Fuzzy-Backstepping Fauzi, Rizana; Happyanto, Dedid Cahya; Sulistijono, Indra Adji
EMITTER International Journal of Engineering Technology Vol 3, No 1 (2015)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (540.017 KB)

Abstract

Induction Motor in Electrical drive system at a accelleration speed for example in electric cars have a hard speed setting is set on a wide range, causing an inconvenience for motorists and a fast response is required any change of speed. It is necessary for good system performance in control motor speed and torque at low speed or fast speed response, which is operated by Indirect Field Oriented Control (IFOC). Speed control on IFOC methods should be better to improving the performance of rapid response in the induction motor. In this paper presented a method of incorporation of Fuzzy Logic Controller and Backstepping (Fuzzy-Backstepping) to improve the dynamically response speed and torque in Induction Motor on electric car, so we get smoothness at any speed change and braking as well as maximum torque of induction motor. Test results showed that Fuzzy-Backstepping can increase the response to changes speed in electric car. System testing is done with variations of the reference point setting speed control system, the simulation results of the research showed that the IFOC method is not perfect in terms of induction motor speed regulation if it’s not use speed control. Fuzzy-Backstepping control is needed which can improve the response of output, so that the induction motor has a good performance, small oscillations when start working up to speed reference.Keywords: Fuzzy-Backstepping, IFOC, induction motor
Fast Response Three Phase Induction Motor Using Indirect Field Oriented Control (IFOC) Based On Fuzzy-Backstepping Fauzi, Rizana; Happyanto, Dedid Cahya; Sulistijono, Indra Adji
EMITTER International Journal of Engineering Technology Vol 3, No 1 (2015)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (540.017 KB) | DOI: 10.24003/emitter.v3i1.36

Abstract

Induction Motor in Electrical drive system at a accelleration speed for example in electric cars have a hard speed setting is set on a wide range, causing an inconvenience for motorists and a fast response is required any change of speed. It is necessary for good system performance in control motor speed and torque at low speed or fast speed response, which is operated by Indirect Field Oriented Control (IFOC). Speed control on IFOC methods should be better to improving the performance of rapid response in the induction motor. In this paper presented a method of incorporation of Fuzzy Logic Controller and Backstepping (Fuzzy-Backstepping) to improve the dynamically response speed and torque in Induction Motor on electric car, so we get smoothness at any speed change and braking as well as maximum torque of induction motor. Test results showed that Fuzzy-Backstepping can increase the response to changes speed in electric car. System testing is done with variations of the reference point setting speed control system, the simulation results of the research showed that the IFOC method is not perfect in terms of induction motor speed regulation if it’s not use speed control. Fuzzy-Backstepping control is needed which can improve the response of output, so that the induction motor has a good performance, small oscillations when start working up to speed reference.Keywords: Fuzzy-Backstepping, IFOC, induction motor
Application of Artificial Neural Networks in Modeling Direction Wheelchairs Using Neurosky Mindset Mobile (EEG) Device Siswoyo, Agus; Arief, Zainal; Sulistijono, Indra Adji
EMITTER International Journal of Engineering Technology Vol 5, No 1 (2017)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4277.212 KB) | DOI: 10.24003/emitter.v5i1.165

Abstract

The implementation of Artificial Neural Network in prediction the direction of electric wheelchair from brain signal input for physical mobility impairment.. The control of the wheelchair as an effort in improving disabled person life quality. The interaction from disabled person is helping in relation to social life with others. Because of the mobility impairment, the wheelchair with brain signal input is made. This wheel chair is purposed to help the disabled person and elderly for their daily activity. ANN helps to develop the mapping from input to target. ANN is developed in 3 level: input level, one hidden level, and output level (6-2-1). There are 6 signal from Neurosky Mindset sensor output, Alpha1, Alpha2, Raw signal, Total time signal, Attention Signal, and Meditation signal. The purpose of this research is to find out the output value from ANN: value in turning right, turning left, and forward. From those outputs, we can prove the relevance to the target. One of the main problem that interfering with success is the problem of proper neural network training. Arduino uno is chosen to implement the learning program algorithm because it is a popular microcontroller that is economic and efficient. The training of artificial neural network in this research uses 21 data package from raw data, Alpha1, Aplha2, Meditation data, Attention data, total time data. At the time of the test there is a value of Mean square Error(MSE) at the end of training amounted to 0.92495 at epoch 9958, value a correlation coefficient of 0.92804 shows that accuracy the results of the training process good.  Keywords: Navigation, Neural network, Real-time training, Arduino 
Automatic Samples Selection Using Histogram of Oriented Gradients (HOG) Feature Distance Salfikar, Inzar; Sulistijono, Indra Adji; Basuki, Achmad
EMITTER International Journal of Engineering Technology Vol 5, No 2 (2017)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v5i2.182

Abstract

Finding victims at a disaster site is the primary goal of Search-and-Rescue (SAR) operations. Many technologies created from research for searching disaster victims through aerial imaging. but, most of them are difficult to detect victims at tsunami disaster sites with victims and backgrounds which are look similar. This research collects post-tsunami aerial imaging data from the internet to builds dataset and model for detecting tsunami disaster victims. Datasets are built based on distance differences from features every sample using Histogram-of-Oriented-Gradient (HOG) method. We use the longest distance to collect samples from photo to generate victim and non-victim samples. We claim steps to collect samples by measuring HOG feature distance from all samples. the longest distance between samples will take as a candidate to build the dataset, then classify victim (positives) and non-victim (negatives) samples manually. The dataset of tsunami disaster victims was re-analyzed using cross-validation Leave-One-Out (LOO) with Support-Vector-Machine (SVM) method. The experimental results show the performance of two test photos with 61.70% precision, 77.60% accuracy, 74.36% recall and f-measure 67.44% to distinguish victim (positives) and non-victim (negatives).
Fast Response Three Phase Induction Motor Using Indirect Field Oriented Control (IFOC) Based On Fuzzy-Backstepping Rizana Fauzi; Dedid Cahya Happyanto; Indra Adji Sulistijono
EMITTER International Journal of Engineering Technology Vol 3 No 1 (2015)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (540.017 KB) | DOI: 10.24003/emitter.v3i1.36

Abstract

Induction Motor in Electrical drive system at a accelleration speed for example in electric cars have a hard speed setting is set on a wide range, causing an inconvenience for motorists and a fast response is required any change of speed. It is necessary for good system performance in control motor speed and torque at low speed or fast speed response, which is operated by Indirect Field Oriented Control (IFOC). Speed control on IFOC methods should be better to improving the performance of rapid response in the induction motor. In this paper presented a method of incorporation of Fuzzy Logic Controller and Backstepping (Fuzzy-Backstepping) to improve the dynamically response speed and torque in Induction Motor on electric car, so we get smoothness at any speed change and braking as well as maximum torque of induction motor. Test results showed that Fuzzy-Backstepping can increase the response to changes speed in electric car. System testing is done with variations of the reference point setting speed control system, the simulation results of the research showed that the IFOC method is not perfect in terms of induction motor speed regulation if it’s not use speed control. Fuzzy-Backstepping control is needed which can improve the response of output, so that the induction motor has a good performance, small oscillations when start working up to speed reference.Keywords: Fuzzy-Backstepping, IFOC, induction motor
Application of Artificial Neural Networks in Modeling Direction Wheelchairs Using Neurosky Mindset Mobile (EEG) Device Agus Siswoyo; Zainal Arief; Indra Adji Sulistijono
EMITTER International Journal of Engineering Technology Vol 5 No 1 (2017)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4277.212 KB) | DOI: 10.24003/emitter.v5i1.165

Abstract

The implementation of Artificial Neural Network in prediction the direction of electric wheelchair from brain signal input for physical mobility impairment.. The control of the wheelchair as an effort in improving disabled person life quality. The interaction from disabled person is helping in relation to social life with others. Because of the mobility impairment, the wheelchair with brain signal input is made. This wheel chair is purposed to help the disabled person and elderly for their daily activity. ANN helps to develop the mapping from input to target. ANN is developed in 3 level: input level, one hidden level, and output level (6-2-1). There are 6 signal from Neurosky Mindset sensor output, Alpha1, Alpha2, Raw signal, Total time signal, Attention Signal, and Meditation signal. The purpose of this research is to find out the output value from ANN: value in turning right, turning left, and forward. From those outputs, we can prove the relevance to the target. One of the main problem that interfering with success is the problem of proper neural network training. Arduino uno is chosen to implement the learning program algorithm because it is a popular microcontroller that is economic and efficient. The training of artificial neural network in this research uses 21 data package from raw data, Alpha1, Aplha2, Meditation data, Attention data, total time data. At the time of the test there is a value of Mean square Error(MSE) at the end of training amounted to 0.92495 at epoch 9958, value a correlation coefficient of 0.92804 shows that accuracy the results of the training process good.  Keywords: Navigation, Neural network, Real-time training, Arduino 
Automatic Samples Selection Using Histogram of Oriented Gradients (HOG) Feature Distance Inzar Salfikar; Indra Adji Sulistijono; Achmad Basuki
EMITTER International Journal of Engineering Technology Vol 5 No 2 (2017)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v5i2.182

Abstract

Finding victims at a disaster site is the primary goal of Search-and-Rescue (SAR) operations. Many technologies created from research for searching disaster victims through aerial imaging. but, most of them are difficult to detect victims at tsunami disaster sites with victims and backgrounds which are look similar. This research collects post-tsunami aerial imaging data from the internet to builds dataset and model for detecting tsunami disaster victims. Datasets are built based on distance differences from features every sample using Histogram-of-Oriented-Gradient (HOG) method. We use the longest distance to collect samples from photo to generate victim and non-victim samples. We claim steps to collect samples by measuring HOG feature distance from all samples. the longest distance between samples will take as a candidate to build the dataset, then classify victim (positives) and non-victim (negatives) samples manually. The dataset of tsunami disaster victims was re-analyzed using cross-validation Leave-One-Out (LOO) with Support-Vector-Machine (SVM) method. The experimental results show the performance of two test photos with 61.70% precision, 77.60% accuracy, 74.36% recall and f-measure 67.44% to distinguish victim (positives) and non-victim (negatives).
Automatic Detection of Wrecked Airplanes from UAV Images Anhar Risnumawan; Muhammad Ilham Perdana; Alif Habib Hidayatulloh; A. Khoirul Rizal; Indra Adji Sulistijono; Achmad Basuki; Rokhmat Febrianto
EMITTER International Journal of Engineering Technology Vol 7 No 2 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v7i2.424

Abstract

Searching the accident site of a missing airplane is the primary step taken by the search and rescue team before rescuing the victims. However, due to the vast exploration area, lack of technology, no access road, and rough terrain make the search process nontrivial and thus causing much delay in handling the victims. Therefore, this paper aims to develop an automatic wrecked airplane detection system using visual information taken from aerial images such as from a camera. A new deep network is proposed to distinguish robustly the wrecked airplane that has high pose, scale, color variation, and high deformable object. The network leverages the last layers to capture more abstract and semantics information for robust wrecked airplane detection. The network is intertwined by adding more extra layers connected at the end of the layers. To reduce missing detection which is crucial for wrecked airplane detection, an image is then composed into five patches going feed-forwarded to the net in a convolutional manner. Experiments show very well that the proposed method successfully reaches AP=91.87%, and we believe it could bring many benefits for the search and rescue team for accelerating the searching of wrecked airplanes and thus reducing the number of victims.