Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENGARUH INCOMPLETE DATA TERHADAP AKURASI VOTING FEATURE INTERVALs-5 (VFI5) Aziz Kustiyo; Agus Buono; Atik Pawestri Sulistyo
KOMPUTASI Vol 4, No 8 (2007): Vol. 4, No. 8, Juli 2007
Publisher : Ilmu Komputer, FMIPA, Universitas Pakuan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1202.648 KB) | DOI: 10.33751/komputasi.v4i8.1783

Abstract

Permasalahan mengenai data hilangan merupakan masalah umum yang tejadi pada lingkungan medis. Data hilangan dapat disebabkan beberapa hal yaitu salah memasukan data, data nya tidak valid dan peralatan  yang di gunakan untuk mengambil data  tidak berfungsi  dengan baik. Voting Feature Intervals merupakan algoritma klasifikasi yang di kembangkan oleh Gulsen Demiroz dan H.Altay Guvenir pada tahun 1997. Algoritma ini dapat mengatasi data hilang dengan mengabaikan data hilang tersebut . Pada penelitian ini dilakukan penerapan algoritma Voting Feature Intervals-5 (VFI5) sebagai algoritma klasifikasi pada kasus data hilang. Data yang di gunakan adalah data  ordinal (data Dermatology) dan data interval (data lonosphere). Untuk mengatasi data hilang di gunakan tiga metode yaitu mengabaikan data hilang dengan mean atau modus. Rata-rata tingkat akurasi data ordinal tertinggi sebesar 93.81% dan Rata-rata tingkat interval tertinggi sebesar  79.89%. Hasil penelitian menunjukan rata-rata tingkat akurasi yang tertinggi dicapai ketika data hilang dengan mean atau modus.