Ohn Zin Lin
Yangon Technological University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Integrating the PV-Diesel Hybrid System for Reliability Improvement in Distribution System Cho Cho Myint; Ohn Zin Lin; Soe Soe Ei Aung
JAREE (Journal on Advanced Research in Electrical Engineering) Vol 3, No 2 (2019): October
Publisher : Department of Electrical Engineering ITS and FORTEI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j25796216.v3.i2.89

Abstract

In Myanmar, as the main power generation is hydro power generation. the utility cannot supply sufficient power to customers during the dry season. Besides interruptions occur frequently due to aging system and lack of prospered protection. Therefore, reliability is an urgent issue in Myanmar. As a result of unbalance between generation and load, the distribution system is getting poor voltage profile, instability and high power losses in high load condition. According to network characteristics, the failure of a component always leads to consequence interruption in a radial distribution system.  Therefore, it is a must consideration to mitigate these challenges to enhance the system reliability. There are many techniques to solve the reliability problems such as reclosers, switching devices (manual and automated switches), system reconfiguration, feeder re-conducting and integration of distributed generation (DG). In this paper, system reliability assessment is evaluated in detail with the integration of the distributed generation such as PV-Diesel Hybrid System. The location of DG is chosen according to the expected energy not supply (EENS) and the voltage drop in proposed system. Next, the optimal sizing of DG is chosen depends on the penetration level of generator. Reliability indices can be evaluated depending on the failure rate(λ), repair time(r) and annual outage time(U) in Electrical Transient and Analysis Program (ETAP) software. The case study of this thesis is carried out in 33/11 kV network which is connected Kyatminton Substation, Kyaukse, Middle Myanmar.Keywords: distributed generation, distribution system, EENS, reliability, reliability indices. 
Modelling and Simulation of Mho Type Distance Relay for High Voltage Transmission Line Protection Using MATLAB Software Win Win Tun; Ohn Zin Lin; Han Su Yin
JAREE (Journal on Advanced Research in Electrical Engineering) Vol 3, No 2 (2019): October
Publisher : Department of Electrical Engineering ITS and FORTEI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j25796216.v3.i2.91

Abstract

Transmission lines are an important part of a power system. Transmission lines have high power transmission capacity and they are prone to faults of larger magnitudes. Various faults occur in transmission lines. Therefore, protection relays are necessary to protect transmission lines. The purpose of protection system is to interrupt the faulty section from the healthy section because the fault currents may damage the electrical equipments. One of the protection relays is distance relay and it is mainly used in transmission line. Sometimes these relay are used for backup protection. Distance relays for determining the impedance need the voltage and current. Transmission lines are typically protected by distance protection relay. Distance relays are considered of high speed class and can provide transmission lines. Nowadays, numerical distance relays have been used instead of using electromechanical and static distance relays. The proposed model was verified under different tests such as single line to ground (L-G) fault, double line to ground (L-L-G) fault, line to line (L-L) fault and three phase (L-L-L) fault. SimPower System was used for modelling and simulation of distance relay, transmission lines and faults. The simulation results were obtained from MATLAB software shows the feasibility of analysis of transmission line protection with mho type distance relay for single line to ground fault, double line to ground fault, line to line fault and three phase fault at different location of transmission lines. The difficulties understanding on operation of distance relay can be cleared by using MATLAB/SIMULINK software.Keywords: distance relay, double line to ground (L-L-G), line to line fault (L-L), MATLAB/SIMULINK, single line to ground fault (L-G), three phase fault (L-L-L).