This Author published in this journals
All Journal Jurnal Spektra
- Suparmi
Universitas Sebelas Maret

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENYELESAIAN PERSAMAAN SCHRÖDINGER POTENSIAL NON-SENTRAL SCARF HIPERBOLIK PLUS ROSEN-MORSE TRIGONOMETRIK MENGGUNAKAN METODE SUPERSIMETRI MEKANIKA KUANTUM Syaifudin, M.; Suparmi, -; Cari, -
Jurnal Spektra Vol 16, No 2 (2015): Spektra: Jurnal Fisika dan Aplikasinya
Publisher : Jurnal Spektra

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakTujuan dari penelitian ini adalah menyelesaikan persamaan Schrödinger potensial non-sentral Scarf hiperbolik plus Rosen-Morse trigonometrik menggunakan metode Supersimetri Mekanika Kuantum (SUSI MK).Spektrum energi dan fingsi radial diperoleh dari penyelesaian persamaan Schrödinger bagian radial, sedangkan fungsi gelombang bagian sudut dan bilangan kuntum orbital diperoleh dari persamaan Schrödinger bagian sudut polar.Spektrum energi dan bilangan kuantum orbital ditentukan dengan sifat shape invariance.Penentuan fungsi gelombang tingkat dasar bagian radial ditentukan dengan sifat lowering operator dan fungsi gelombang tereksitasi ditentukan dengan sifat raising operator.Baik untuk bagian radial maupun bagian polar ditentukan dengan menggunakan sifat lowering operator dan raising operator. AbstractThe purpose of this research is to solve the Schrödinger equation of non-central potential Scarf hyperbolic plus Rosen-Morse trigonometric method Supersymmetry Quantum Mechanics (SUSY QM). Energy spectrum and radial functions derived from the completion of the radial part of the Schrödinger equation, while the wave functions of the corners and orbital quantum numbers obtained from the Schrödinger equation part of the polar angle. Energy spectrum and orbital quantum number is determined by the nature of the shape invariance. Determination of the wave functions of the radial part of the base rate is determined by the nature of lowering operators and the excited wave function is determined by the nature of the raising operator. Both for the radial and polar parts determined by using the properties of lowering and raising operators.Keywords: Schrödinger equation, the non-central potential Scarf hiperbolic plus Rosen-Morse trigonometric, Supersymmetry Quantum Mechanics
Analisis Persamaan Dirac untuk Potensial Pöschl-Teller Trigonometrik dan Potensial Scarf Trigonometrik pada Kasus Spin Simetri Bagian Radial menggunakan Metode Iterasi Asimtotik Suparmi, -; Cari, -
Jurnal Spektra Vol 16, No 2 (2015): Spektra: Jurnal Fisika dan Aplikasinya
Publisher : Jurnal Spektra

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakPersamaan Dirac untuk potensial Pöschl-Teller Trigonometrik dan Potensial Scarf Trigonometrik pada kasus spin simetri bagian radial diselesaikan dengan menggunakan metode Iterasi Asimtotik atau Asymptotic Iteration Method (AIM). Penyelesaian pada kasus ini dengan mengkombinasikan dua potensial lalu disubstitusikan ke persamaan Dirac, kemudian dilakukan pemisahan variabel menjadi bagian radial. Persamaan bagian radial diselesaikan dengan mereduksi menjadi persamaan perantara hipergeometri dan dilanjutkan dengan menyelesaikan menggunakan AIM. Energi relativistik sistem dihitung menggunakan software Matlab 2011. Penelitian ini dibatasi untuk kasus spin simetri bagian radial.Kata kunci: Persamaan Dirac, potensial Pöschl-Teller Trigonometrik, potensial Scarf Trigonometrik, metode Iterasi Asimtotik, dan spin simetriAbstract The Dirac equation for Pöschl-Teller Trigonometric potential and Scarf Trigonometric potential in case spin symmetric of radial is solved using asymptotic iteration method (AIM). The combination of two potential is subtituted into the Dirac equation,then the separation of  variables into radial part. Radial part equation solved by reducing it to the hypergeometri intermediaries equation and continued with resolved to follow the asymptotic iteration method. The relativistic energy calculated using Matlab 2011. This study is limited to the case of spin symmetry radial section.Key words: Dirac equation, Trigonometric Pöschl-Teller potential, Trigonomteric Scarf potential, Asymptotic Iteration Method (AIM), and spin symmetry