A. Anggraeni
Indonesian Research Institute for Animal Production (IRIAP)

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Association between GH (g.1456_1457insT), GHRH (g.4474 C>A), and Pit-1 (g.244G>A) Polymorphisms and Lactation Traits in Holstein Friesian Cattle A. Anggraeni; C. Sumantri; F. Saputra; L. Praharani
Tropical Animal Science Journal Vol. 43 No. 4 (2020): Tropical Animal Science Journal
Publisher : Faculty of Animal Science, Bogor Agricultural University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5398/tasj.2020.43.4.291

Abstract

Lactation traits are controlled by many genes, among others, potentially by growth genes. This research was conducted to study genetic polymorphisms of GH, GHRH, and Pit-1 genes and associations of GH (g.1456_1457 InsT), GHRH (g.4474 C>A), and Pit-1 (g.244 G>A) genotypes with milk yield and quality in Holstein Friesian (HF) cattle. Genotyping was conducted for HF dairy cows raised by small farmers from North Lembang (SF-NL) (98 heads) and South Lembang (SF-SL) (95 heads), and also from Cikole Dairy Cattle Station (CDCS) (82 heads) in Lembang, West Java, Indonesia. Progeny tested of HF bulls (17 heads) from LAIC (Lembang Artificial Insemination Center) in West Java and from SAIC (Singosari AIC) (32 heads) in East Java were also genotyped. Effects of genotypes on test day milk yield, fat content, and SNF content were analyzed by General Linear Models. The GHRH g.4474 C>A SNP and Pit-1 g.244 G>A SNP generated high frequencies of C allele to A allele, while the two allelic frequencies of the GH g.1456_1457 InsT varied. Compared to the AA and AC genotypes, the CC genotype of the GH gene resulted higher test day milk yield (p<0.01), fat content (p<0.05), and SNF content (p<0.05). Further the CC genotype of the GHRH gene yielded higher milk yield (p<0.05), while the GG genotype of the Pit-1 gene resulted higher fat content (p<0.05). Therefore the GH g.1456_1457 InsT, GHRH g.4474 C>A SNP, and Pit-1 g.244 G>A SNP are potential to be used as molecular markers for selection on milk yield and quality in domestic HF cattle.
Acetyl-CoA Carboxylase Alpha Gene Polymorphism and Its Association with Milk Fatty Acid of Holstein Friesian Using Real-Time PCR Method R. Azis; Jakaria; A. Anggraeni; A. Gunawan
Tropical Animal Science Journal Vol. 43 No. 4 (2020): Tropical Animal Science Journal
Publisher : Faculty of Animal Science, Bogor Agricultural University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5398/tasj.2020.43.4.306

Abstract

Milk fatty acids are largely affected by genetic factors. Acetyl-CoA Carboxylase Alpha (ACACA) gene is one of the important genes in regulation and metabolic function of milk fatty acids in dairy cattle. The objective of this study was to find out the relationship of single nucleotide polymorphism (SNP) ACACA gene with milk fatty acid trait in local dairy cattle. A total of 277 samples of Holstein Friesian (HF) were collected from Indonesian Research Institute for Animal Production (IRIAP), Animal Breeding Center and Forage Feed of Baturraden (ABCFFB), Central Java Province, Animal Husbandry Training Center of Cikole (AHTCC), West Java Province, Singosari Artificial Insemination Station (Singosari AIS), East Java Province, and Lembang Artificial Insemination (Lembang AIS), West Java Province, Indonesia. Genotyping of this SNP marker (g.2203G>T) was analyzed using the real-time Polymerase Chain Reaction (PCR) based on the hybridization TaqMan probe as the method for allelic discrimination. Milk samples were analyzed using Gas Chromatography and Mass Spectrometry (GCMS). The results of this study revealed the GG and GT genotypes. The proportion of the GG genotype frequency (0.88) was higher than the GT genotype (0.11) and the G Allele frequency was shown higher than the T allele in all locations, i.e., 0.942 and 0.08, respectively. The ACACA gene g.2203G>T SNP was significant (p<0.05) for lauric (C12:0) and dodecanoic (C17:1) acids. It was concluded that the ACACA gene g.2203G>T SNP could be useful as a marker selection for milk fatty acid such as lauric and dodecanoic fatty acids.