Sutarno Sutarno
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Superparamagnetic Nanocomposite of Magnetite-Chitosan Using Oleic Acid as Anti Agglomeration and Glutaraldehyde as Crosslinkage Agent Suyanta Suyanta; Sutarno Sutarno; Nuryono Nuryono; Bambang Rusdiarso; Eko Sri Kunarti; Hesti Kusumastuti; Lia Kurnia
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (16.346 KB) | DOI: 10.22146/ijc.28989

Abstract

In this research magnetite was synthesized by coprecipitation method, in which solution of NH4OH was added into the solution containing a mixture of Fe2+/Fe3+ (molar ratio 1:2) until pH 11 under strong ultrasonic agitation for 30 min. The black sediment of magnetite was filtered, washed and dried. The product was then modified by using oleic acid to prevent agglomeration. Chitosan was prepared by deacetilization of chitin, whereas chitin was extracted from shrimp shell. In the synthesis of nanocomposite, 0.5 g of chitosan and 1.5 g of oleic acid modified magnetite were introduced into 100 mL of 2% acetic acid solution, followed by sonication treatment for 10 min and magnetic stirring for 20 min. In order to perform the cross-linkage reaction, solution of 2% glutaraldehyde was added into the mixture at temperature of 40 °C for 3 h. The composite was collected by magnetic separation, followed by washing with distilled water and ethanol in a row. The product was dried and characterized by XRD, FTIR, TEM and VSM methods. The result showed that the composite had good crystal structure with a cubic inverse spinel structure, monodisperse and quasi sphere in shape with diameter of 20–25 nm. It had high saturation magnetization (43.4 emu/g) and superparamagnetic property.
Synthesis of Zeolite/NPK Coated with Cu-Alginate-PVA-Glutaraldehyde as a Slow-Release Fertilizer Ratna Betriani; Sutarno Sutarno; Indriana Kartini; Jolang Budiarta
Indonesian Journal of Chemistry Vol 23, No 1 (2023)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.76205

Abstract

The objectives of this study were to synthesize zeolite/NPK coated with Cu-alginate-PVA-glutaraldehyde as a material for slow-release fertilizers and to study the effect of various Cu concentrations in the coating material on the resistance of the zeolite/NPK fertilizer and to study the release rate reaction in citric acid. The study began with the synthesis of the zeolite/NPK fertilizer and the Cu-alginate-PVA-glutaraldehyde coating materials with variations of Cu concentration of 0.0; 0.2; 0.4; 0.6; 0.8; and 1.0 M. The Zeolite/NPK fertilizer and the coated NPK fertilizer were characterized by XRD and FTIR. The determination of the released N and P was conducted using a UV-Visible spectrophotometer, while released K and Cu was analyzed using AAS. XRD showed that the composite had a crystalline structure. The FTIR spectra showed characteristic cross-linking interactions between PVA-glutaraldehyde and Cu-alginate. A study of the release kinetics of zeolite/NPK coated with Cu-alginate-PVA-glutaraldehyde showed that increasing Cu concentration to 0.4 M decreased the amount of nutrition released, and the release process followed the pseudo-second-order kinetics. The release rate constants of N,P,K and Cu in the citric acid medium on zeolite/NPK coated with Cu 0.4 M were 8.49 × 10−3, 17.48 × 10−3, 21.73 × 10−3, and 8.57 × 10−3 mg g−1 h−1, respectively.