Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pengaruh Proses Blending dan Ultrasonikasi terhadap Struktur Morfologi Ekstrak Serat Limbah Batang Kelapa Sawit untuk Bahan Baku Bioplastik (Selulosa Asetat) Saputri, Lestari Hetalesi; Sukmawan, Romi
Rekayasa Vol 13, No 1: April 2020
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (695.771 KB) | DOI: 10.21107/rekayasa.v13i1.6180

Abstract

Batang kelapa sawit (BKS) hasil dari kegiatan replanting merupakan limbah bagi lingkungan apabila dibiarkan begitu saja  di areal perkebunan. Padahal limbah ini mengandung selulosa cukup tinggi yang senyawa turunannya dapat diolah lebih lanjut, salah satunya menjadi bahan baku bioplastik yaitu selulosa asetat. Selulosa dapat diisolasi melalui tahapan proses chemis (ekstraksi) dan mekanis (misalnya blending dan ultrasonikasi). Penelitian ini bertujuan untuk mengetahui pengaruh masing-masing tahapan proses tersebut, terutama proses blending dan ultrasonikasi terhadap perubahan sifat morfologi serat limbah BKS. Proses ekstraksi menggunakan NaOH dan H2O2 5%, proses blending menggunakan PHILIPS HR2096 kecepatan 21.000 rpm dan proses sonikasi menggunakan ultrasonic cell crusher. Hasil analisa FTIR setelah proses ekstraksi menunjukkan bahwa terdapat adanya ikatan O-H, C-H dan C-O pada puncak gelombang 3410,15; 2908,65 dan 1033,85 cm-1 yang merupakan ikatan penyusun gugus utama senyawa selulosa. Hasil XRD memperlihatkan terjadi penurunan derajat kristalin sebelum dan setelah proses blending yaitu sebesar 18,26%. Namun setelah proses ultrasonikasi terjadi kenaikan kembali nilai derajat kristalin dari 21,09% menjadi 30%. Karakterisasi morfologi menunjukkan bahwa proses blending dapat memisahkan struktur amorf dari serat selulosa dan proses ultrasonikasi dapat memecah serat selulosa menjadi lebih kecil. Dari penelitian ini dapat disimpulkan bahwa proses blending dan ultrasonikasi mempengaruhi perubahan struktur dan morfologi serat selulosa hasil ekstrak limbah BKS, namun penelitian ini masih perlu dikembangkan untuk mengetahui kondisi proses yang tepat untuk menghasilkan serat nanoselulosa yang lebih banyak. Kondisi proses tersebut terutama yang berkaitan dengan kecepatan putar dan waktu tinggal selama proses.The Effect of Blending and Ultrasonication Processes on The Morphological Structure of Palm Oil Trunk Extracts for Raw Material of Bioplastic (Cellulose Acetate)Oil Palm Trunks (OPT) is waste generated from replanting activities that if left in the environment can pollute the plantation area. However, this waste has high cellulose content including its derivative compounds which can be further processed into new products, one of which is a bioplastic raw material, cellulose acetate. Cellulose can be isolated through two processes, which consist of chemical (by extraction) and mechanical (by blending and ultrasonication) processes. This research studies the effects of each stage process, especially the main effects of the blending and ultrasonication processes on the morphological characteristics of palm oil trunk wastes. The extraction process uses NaOH 5% and H2O2 5%, the blending uses PHILIPS HR 2096 with a speed of 21,000 rpm and the sonication process uses an ultrasonic cell crusher. The results of FTIR analysis after the extraction process showed O-H, C-H and C-O bonds at the wave peak of 3410.15; 2908.65 and 1033.85 cm-1, which are the main constituent groups of cellulose compounds. The results of XRD analysis showed a decrease in the degree of crystalline of 18.26% after the blending process. However, after the ultrasonication process, the degree of crystalline increased from 21.09% to 30%. Morphological characterization shows that blending can separate the amorphous structure of cellulose fibers and the ultrasonication process can break down cellulose fibers into smaller sizes. This research still needs to be developed in determining the exact operating conditions to produce nanocellulose fibers, especially those related to rotational speed and residence time during the process.Keywords: The degree of crystalline, extraction, nanocellulose, cellulose
Isolasi Nano Selulosa dari Ampas Tebu dengan Proses Blending pada Berbagai Variasi Konsentrasi Lestari Hetalasi Saputri; Romi Sukmawan; Heru Santoso Budi Rochardjo; Rochmadi Rochmadi
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2018: PROSIDING SNTKK 2018
Publisher : Seminar Nasional Teknik Kimia Kejuangan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Effects of the Blending Condition on the Morphology, Crystallinity, and Thermal Stability of Cellulose Microfibers Obtained from Bagasse Romi Sukmawan; Lestari Hetalesi Saputri; Rochmadi Rochmadi; Heru Santoso Budi Rochardjo
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (468.284 KB) | DOI: 10.22146/ijc.31051

Abstract

In this study, cellulose microfibers were isolated from bagasse fibers in three stages. Initially, the fibers were treated with 5 wt.% NaOH solution followed by bleaching with 5 wt.% H2O2 in an alkali condition (pH 11) to remove hemicelluloses and lignin. Whole cellulosic fibers were obtained by mechanically separating the fibers using a modified kitchen blender to produce cellulose microfibers. Morphological (Scanning Electron Microscopy (SEM)) and structural analysis of the treated fiber was performed using Fourier Transformed Infrared (FTIR) spectroscopy and X-ray Diffraction (XRD). Morphological characterization identified that the diameter of the fibers varied between 20 nm to 20 µm and the FTIR analysis demonstrated that the treatments resulted in the gradual removal of lignin and hemicelluloses from the fiber. Furthermore, the XRD studies revealed that the combination of the chemical and mechanical treatment is an effective way to increase purity of cellulose (removal of amorphous lignin and hemicellulose) and break down the microfiber into shorter crystalline parts with higher crystallinity (77.25%) than raw bagasse (40.54%). Accordingly, changing the agitation time revealed that the cellulose crystallite size in the sample varied slightly with agitation time by using a blender (3.35 nm). Finally, the higher crystallinity and crystallite size improved the thermal stability of the cellulose microfiber confirming their suitability in the manufacturing biomaterial composites.